How Integrated Ecological-Economic Modelling Can Inform Landscape Pattern in Forest Agroecosystems

  • Carola PaulEmail author
  • Esther Reith
  • Jan Salecker
  • Thomas Knoke
Interface of Landscape Ecology and Natural Resource Management (Y. Wiersma and N. Koper, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Interaction of Landscape Structure and Natural Resource Management
  2. Topical Collection on Interface of Landscape Ecology and Natural Resource Management


Purpose of Review

The purpose of this review is to analyse recent advances in ecological-economic modelling designed to inform desirable landscape composition and configuration. We explore how models capture the economic and ecological consequences of landscape pattern, and potential feedbacks to the responses by policy or landholders.

Recent Findings

Modelling approaches are becoming increasingly interlinked, coupling components of empirical-statistical modelling, spatial and bioeconomic simulation, land-use optimization and agent-based models. We analyse recent methodological advances and find that only few examples capture feedbacks between landscape pattern and decision-making.


We outline how future hybrid models could build on these recent advances by inter alia an improved representation of landscape patterns, refining the theory behind decision-making, incorporating uncertainty and reducing model complexity. We conclude that coupling recent developments in land-use optimization and agent-based models may help bridge gaps between modelling philosophies as well as parsimony vs. complexity. This fruitful field of research could help to improve understanding on the role of landscape pattern in social-ecological systems.


Bioeconomic modelling Social-economic models Portfolio analysis Landscape metrics Ecosystem services Trade-offs 



This work has benefitted from research funded by the Deutsche Forschungsgemeinschaft (PA 3162-1, KN586/9-1) and research in the framework of the collaborative German-Indonesian research project EFForTS (CRC 990, project number 19262686).

Compliance with Ethical Standards

Conflict of Interest

Carola Paul, Esther Reith, Jan Salecker and Thomas Knoke declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Defries R, Nagendra H. Ecosystem management as a wicked problem. Science. 2017;356:265–70. .CrossRefPubMedGoogle Scholar
  2. 2.
    Sayer J, Sunderland T, Ghazoul J, Pfund J-L, Sheil D, Meijaard E, et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci U.S.A. 2013;110:8349–8356. doi: .
  3. 3.
    • Chopin P, Bergkvist G, Hossard L. Modelling biodiversity change in agricultural landscape scenarios—a review and prospects for future research. Biol Conserv. 2019;235:1–17. doi: . Review article summarizing current models predicting biodiversity change. The authors suggest to more intensively incorporate such models in ecological-economic models.
  4. 4.
    Fahrig L. Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst. 2017;48:1–23. doi: .
  5. 5.
    Landis DA. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl Ecol. 2017;18:1–12. .CrossRefGoogle Scholar
  6. 6.
    Duarte GT, Santos PM, Cornelissen TG, Ribeiro MC, Paglia AP. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landscape Ecol. 2018;33:1247–57. .CrossRefGoogle Scholar
  7. 7.
    Verhagen W, AJA VT, Baggio Compagnucci A, Poggio L, Gimona A, Verburg PH. Effects of landscape configuration on mapping ecosystem service capacity: a review of evidence and a case study in Scotland. Landscape Ecol. 2016;31:1457–79. .CrossRefGoogle Scholar
  8. 8.
    Koh LP, Levang P, Ghazoul J. Designer landscapes for sustainable biofuels. Trend Ecol Evol. 2009;24:431–8. .CrossRefGoogle Scholar
  9. 9.
    Georgescu-Roegen N. Inequality, limits and growth from a bioeconomic viewpoint. Rev Soc Econ. 1977;35:361–75. .CrossRefGoogle Scholar
  10. 10.
    Castro LM, Härtl F, Ochoa S, Calvas B, Izquierdo L, Knoke T. Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations. J Bioecon. 2018;94:405. doi: .
  11. 11.
    Schlüter M, Müller B, Frank K. The potential of models and modeling for social-ecological systems research: the reference frame ModSES. E&S 2019. doi: .
  12. 12.
    Verburg PH, Dearing JA, Dyke JG, van der Leeuw S, Seitzinger S, Steffen W, et al. Methods and approaches to modelling the Anthropocene. Global Environ Change. 2016;39:328–40. .CrossRefGoogle Scholar
  13. 13.
    • O’Sullivan D, Evans T, Manson S, Metcalf S, Ligmann-Zielinska A, Bone C. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome. J Land Use Sc. 2016;11:177–87. doi: . This article summarizes important steps for future ABM models.
  14. 14.
    Von Thünen, JH. Der isolirte Staat in Beziehung auf Landwirthschaft und Nationalökonomie: Die naturgemässe Arbeitslose und dessen Verhältniss zum Zinsfuss und zur Landwirte. II. Theil, I. Abtheilung. Rostock, Germany: Leopold; 1845.Google Scholar
  15. 15.
    Frazier AE, Kedron P. Landscape metrics: past progress and future directions. Curr Landscape Ecol Rep. 2017;2:63–72. .CrossRefGoogle Scholar
  16. 16.
    Wu Q, Guo F, Li H, Kang J. Measuring landscape pattern in three dimensional space. Landsc Urb Plann. 2017;167:49–59. .CrossRefGoogle Scholar
  17. 17.
    Santana J, Reino L, Stoate C, Moreira F, Ribeiro PF, Santos JL, et al. Combined effects of landscape composition and heterogeneity on farmland avian diversity. Ecol Evol. 2017;7:1212–1223. doi: .CrossRefGoogle Scholar
  18. 18.
    Westphal C, Vidal S, Horgan FG, Gurr GM, Escalada M, van Chien H, et al. Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic Appl Ecol. 2015;16:681–689. doi: .
  19. 19.
    Schulte LA, Niemi J, Helmers MJ, Liebman M, Arbuckle JG, James DE, et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proc Natl Acad Sci U.S.A. 2017;114:11247–52. doi: .
  20. 20.
    Minang PA, Noordwijk M Van, Freeman OE, Mbow C, de Leeuw J, Catacutan D, editors. Climate-smart landscapes: Multifunctionality in practice. Nairobi: World Agrofrestry Centre; 2015.Google Scholar
  21. 21.
    Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric Syst 2016. doi: .
  22. 22.
    Paul C, Weber M, Knoke T. Agroforestry versus farm mosaic systems—comparing land-use efficiency, economic returns and risks under climate change effects. Sci Total Environ. 2017. .CrossRefGoogle Scholar
  23. 23.
    Paul C, Knoke T. Between land sharing and land sparing—what role remains for forest management and conservation? Int Forest Rev. 2015;17:210–30. .CrossRefGoogle Scholar
  24. 24.
    TEEB. The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusion and recommendations of TEEB. 2010.Google Scholar
  25. 25.
    Wunder S, Brouwer R, Engel S, Ezzine-de-Blas D, Muradian R, Pascual U, et al. From principles to practice in paying for nature’s services. Nat Sustain. 2018;1:145–50. .CrossRefGoogle Scholar
  26. 26.
    Vallet A, Locatelli B, Levrel H, Wunder S, Seppelt R, Scholes RJ, et al. Relationships between ecosystem services: comparing methods for assessing tradeoffs and synergies. Ecol Econ. 2018;150:96–106. .CrossRefGoogle Scholar
  27. 27.
    Herrero-Jáuregui C, Arnaiz-Schmitz C, Herrera L, Smart SM, Montes C, Pineda FD, et al. Aligning landscape structure with ecosystem services along an urban–rural gradient. Trade-offs and transitions towards cultural services. Landscape Ecol. 2018;12:8. .CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Gao J. Linking landscape structures and ecosystem service value using multivariate regression analysis: a case study of the Chaohu Lake Basin, China. Environ Earth Sci. 2016;75:5. .CrossRefGoogle Scholar
  29. 29.
    Ochoa WS, Härtl F, Paul C, Knoke T. Cropping systems are homogenized by off-farm income—empirical evidence from small-scale farming systems in dry forests of southern Ecuador. Land Use Pol. 2019;82:204–19. .CrossRefGoogle Scholar
  30. 30.
    Weigel R, Koellner T, Poppenborg P, Bogner C. Crop diversity and stability of revenue on farms in Central Europe: an analysis of big data from a comprehensive agricultural census in Bavaria. PLoS ONE. 2018;13:e0207454. .CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Matthies BD, Jacobsen JB, Knoke T, Paul C, Valsta L. Utilising portfolio theory in environmental research—new perspectives and considerations. J Environ Manage. 2019;231:926–39. .CrossRefPubMedGoogle Scholar
  32. 32.
    Lausch A, Blaschke T, Haase D, Herzog F, Syrbe R-U, Tischendorf L, et al. Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecological Modelling. 2015;295:31–41. .CrossRefGoogle Scholar
  33. 33.
    Elsawah S, Pierce SA, Hamilton SH, van Delden H, Haase D, Elmahdi A, et al. An overview of the system dynamics process for integrated modelling of socio-ecological systems: lessons on good modelling practice from five case studies. Env Mod Softw. 2017;93:127–45. .CrossRefGoogle Scholar
  34. 34.
    Mas J-F, Kolb M, Paegelow M, Camacho Olmedo MT, Houet T. Inductive pattern-based land use/cover change models: a comparison of four software packages. Env Mod Softw. 2014;51:94–111. .CrossRefGoogle Scholar
  35. 35.
    • Daniel CJ, Frid L, Sleeter BM, Fortin M-J, Kriticos D. State-and-transition simulation models: a framework for forecasting landscape change. Methods Ecol Evol. 2016;7:1413–23. doi: . The article presents important innovations towards improving spatial and time dynamics of STM Models.
  36. 36.
    Costanza JK, Abt RC, AJ MK, Collazo JA. Bioenergy production and forest landscape change in the southeastern United States. GCB Bioenergy. 2017;9:924–39. .CrossRefGoogle Scholar
  37. 37.
    Costanza JK, Terando AJ, AJ MK, Collazo JA. Modeling climate change, urbanization, and fire effects on Pinus palustris ecosystems of the southeastern U.S. J Environ Manage. 2015;151:186–99. .CrossRefPubMedGoogle Scholar
  38. 38.
    Grashof-Bokdam CJ, Cormont A, NBP P, EJGM W, JGJ F, PFM O. Modelling shifts between mono- and multifunctional farming systems: the importance of social and economic drivers. Landscape Ecol. 2017;32:595–607. .CrossRefGoogle Scholar
  39. 39.
    Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, SSA M. Modeling the spatial dynamics of regional land use: the CLUE-S model. Env Manag. 2002;30:391–405. .CrossRefGoogle Scholar
  40. 40.
    Zhao M, He Z. Evaluation of the effects of land cover change on ecosystem service values in the upper reaches of the Heihe River Basin, Northwestern China. Sustainability. 2018;10:4700. .CrossRefGoogle Scholar
  41. 41.
    Ferreira BM, Soares-Filho BS, FMQ P. The Dinamica EGO virtual machine. Sc Comp Programm. 2019;173:3–20. .CrossRefGoogle Scholar
  42. 42.
    Stan K, Sanchez-Azofeifa A, Espírito-Santo M, Portillo-Quintero C. Simulating deforestation in Minas Gerais, Brazil, under changing government policies and socioeconomic conditions. PLoS ONE. 2015;10:–e0137911. .CrossRefGoogle Scholar
  43. 43.
    Djanibekov U, Khamzina A. Stochastic economic assessment of afforestation on marginal land in irrigated farming system. Environ Resource Econ. 2016;63:95–117. .CrossRefGoogle Scholar
  44. 44.
    Rosa F, Taverna M, Nassivera F, Iseppi L. Farm/crop portfolio simulations under variable risk: a case study from Italy. Agric Econ. 2019;7:171. .CrossRefGoogle Scholar
  45. 45.
    Knoke T, Messerer K, Paul C. The role of economic diversification in forest ecosystem management. Curr Forestry Rep. 2017;3:93–106. .CrossRefGoogle Scholar
  46. 46.
    Castro LM, Calvas B, Knoke T. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios. PLoS ONE. 2015;10:e0120384. .CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hauk S, Gandorfer M, Wittkopf S, Müller UK, Knoke T. Ecological diversification is risk reducing and economically profitable—the case of biomass production with short rotation woody crops in south German land-use portfolios. Biomass and Bioenergy. 2017;98:142–52. .CrossRefGoogle Scholar
  48. 48.
    Mahabadi SA, ARM B, Bgheri A. Improving adaptive capacity of social-ecological system of Tashk-Bakhtegan Lake basin to climate change effects—a methodology based on Post-Modern Portfolio Theory. Ecohydrology & Hydrobiology. 2018;18:365–78. .CrossRefGoogle Scholar
  49. 49.
    Knoke T, Paul C, Härtl F, Castro LM, Calvas B, Hildebrandt P. Optimizing agricultural land-use portfolios with scarce data—a non-stochastic model. Ecological Economics. 2015;120:250–9. .CrossRefGoogle Scholar
  50. 50.
    Ochoa M, Santiago W, Paul C, Maria Castro L, Valle L, Knoke T. Banning goats could exacerbate deforestation of the Ecuadorian dry forest—how the effectiveness of conservation payment is influenced by productive use options. Erdkunde. 2016;70:49–67.CrossRefGoogle Scholar
  51. 51.
    •• Chopin P, Blazy J-M, Guindé L, Wery J, Doré T. A framework for designing multi-functional agricultural landscapes: application to Guadeloupe Island. Agric Syst. 2017;157:316–29. doi: . A study combining optimization and simulation approaches in an ecological-economic land-use allocation model.
  52. 52.
    • Kaim A, Cord AF, Volk M. A review of multi-criteria optimization techniques for agricultural land use allocation. Env Mod Softw. 2018;105:79–93. doi: . Recent review summarizing up-to-date optimization algorithms used in multicriteria optimization of land-use allocation.
  53. 53.
    Uhde B, Andreas Hahn W, Griess VC, Knoke T. Hybrid MCDA methods to integrate multiple ecosystem services in forest management planning: a critical review. Env Manag. 2015;56:373–88. .CrossRefGoogle Scholar
  54. 54.
    Kennedy CM, Miteva DA, Baumgarten L, Hawthorne PL, Sochi K, Polasky S, et al. Bigger is better: improved nature conservation and economic returns from landscape-level mitigation. Sci Adv. 2016;2:e1501021. .CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li X, Ma X. An improved simulated annealing algorithm for interactive multi-objective land resource spatial allocation. Ecol Complex. 2018;36:184–95. .CrossRefGoogle Scholar
  56. 56.
    •• Knoke T, Paul C, Hildebrandt P, Calvas B, Castro LM, Hartl F, et al. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat Commun. 2016;7:11877. doi: . A new methodological approach to solve complex problems of land-use allocation using a parsimonious multi-objective optimization approach.
  57. 57.
    Soltani A, Sankhayan PL, Hofstad O. Playing forest governance games: state-village conflict in Iran. For Pol Econ. 2016;73:251–61. .CrossRefGoogle Scholar
  58. 58.
    Bateman IJ, Harwood AR, Mace GM, Watson RT, ABSON DJ, Andrews B, et al. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science. 2013;341:45–50. doi: .
  59. 59.
    Yoshimoto A, Asante P, Konoshima M, Surovy P. Integer programming approach to control invasive species spread based on cellular automaton model. Nat Resour Model. 2017. .
  60. 60.
    Cavender-Bares J, Polasky S, King E, Balvanera P. A sustainability framework for assessing trade-offs in ecosystem services. E&S 2015. doi: .
  61. 61.
    Dunnett A, Shirsath PB, Aggarwal PK, Thornton P, Joshi PK, Pal BD, et al. Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions. Ecol Modell. 2018;381:23–35. doi: .
  62. 62.
    Kennedy CM, Hawthorne PL, Miteva DA, Baumgarten L, Sochi K, Matsumoto M, et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol Conserv. 2016;204:221–230. doi: .
  63. 63.
    Verhagen W, van der Zanden EH, Strauch M, van AJA T, Verburg PH. Optimizing the allocation of agri-environment measures to navigate the trade-offs between ecosystem services, biodiversity and agricultural production. Env Sc. Pol. 2018;84:186–96. .CrossRefGoogle Scholar
  64. 64.
    • Schulze J, Müller B, Groeneveld J, Grimm V. Agent-based modelling of social-ecological systems: achievements, challenges, and a way forward. JASSS 2017. doi: . Recent review summarizing methods and research topics of economic-ecological ABM models.
  65. 65.
    Filatova T, Verburg PH, Parker DC, Stannard CA. Spatial agent-based models for socio-ecological systems: challenges and prospects. Env Mod Softw. 2013;45:1–7. .CrossRefGoogle Scholar
  66. 66.
    Berger T, Troost C. Agent-based modelling of climate adaptation and mitigation options in agriculture. J Agric Econ. 2014;65:323–48. .CrossRefGoogle Scholar
  67. 67.
    Gonzalez-Redin J, Gordon IJ, Hill R, Polhill JG, Dawson TP. Exploring sustainable land use in forested tropical social-ecological systems: a case-study in the wet tropics. J Environ Manage. 2019;231:940–52. .CrossRefPubMedGoogle Scholar
  68. 68.
    Brown C, Alexander P, Holzhauer S, MDA R. Behavioral models of climate change adaptation and mitigation in land-based sectors. WIREs Clim Change. 2017;8:e448. .CrossRefGoogle Scholar
  69. 69.
    Villamor GB, Le QB DU, van Noordwijk M, PLG V. Biodiversity in rubber agroforests, carbon emissions, and rural livelihoods: an agent-based model of land-use dynamics in lowland Sumatra. Env Modell Softw. 2014;61:151–65. .CrossRefGoogle Scholar
  70. 70.
    Amadou ML, Villamor GB, Kyei-Baffour N. Simulating agricultural land-use adaptation decisions to climate change: an empirical agent-based modelling in northern Ghana. Agric Syst. 2018;166:196–209. .CrossRefGoogle Scholar
  71. 71.
    •• Dislich C, Hettig E, Salecker J, Heinonen J, Lay J, Meyer KM, et al. Land-use change in oil palm dominated tropical landscapes-An agent-based model to explore ecological and socio-economic trade-offs. PLoS ONE. 2018;13:e0190506. doi: . This study integrates ABM with a landscape generator, farmer heterogeneity and aspects of learning and farmer interactions on land-use allocation.
  72. 72.
    Carauta M, Latynskiy E, Mössinger J, Gil J, Libera A, Hampf A, et al. Can preferential credit programs speed up the adoption of low-carbon agricultural systems in Mato Grosso, Brazil?: Results from bioeconomic microsimulation. Reg Environ Change. 2018;18:117–128. doi: .
  73. 73.
    Kerebel A, Gélinas N, Déry S, Voigt B, Munson A. Landscape aesthetic modelling using Bayesian networks: Conceptual framework and participatory indicator weighting. Landsc Urb Plann. 2019;185:258–71. .CrossRefGoogle Scholar
  74. 74.
    Kremmydas D, Athanasiadis IN, Rozakis S. A review of agent based modeling for agricultural policy evaluation. Agric Syst. 2018;164:95–106. .CrossRefGoogle Scholar
  75. 75.
    Kelley H, Evans T. The relative influences of land-owner and landscape heterogeneity in an agent-based model of land-use. Ecol Econ. 2011;70:1075–87. .CrossRefGoogle Scholar
  76. 76.
    •• Langhammer M, Thober J, Lange M, Frank K, Grimm V. Agricultural landscape generators for simulation models: a review of existing solutions and an outline of future directions. Ecol Modell. 2019;393:135–51. doi: . Review article presenting important advances in landscape generators which could become an important backbone for future ecological-economic modelling.
  77. 77.
    Salecker J, Dislich C, Kerstin Wiegand K, Meyer KM, Pe’er G. EFForTS-LGraf: a landscape generator for creating smallholder-driven land-use mosaics. Göttingen: EFForTS discussion paper series, University of Goettingen: 29; 2019.Google Scholar
  78. 78.
    Pe’er G, Zurita GA, Schober L, Bellocq MI, Strer M, Müller M, et al. Simple process-based simulators for generating spatial patterns of habitat loss and fragmentation: a review and introduction to the G-RaFFe model. PLoS ONE. 2013;8:e64968. .CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Schreinemachers P, Berger T. Land use decisions in developing countries and their representation in multi-agent systems. J Land Use Sc. 2006;1:29–44. .CrossRefGoogle Scholar
  80. 80.
    Seppelt R, Lautenbach S, Volk M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr Opin Env Sustain. 2013;5:458–63. .CrossRefGoogle Scholar
  81. 81.
    Oremland M, Laubenbacher R. Optimization of agent-based models: scaling methods and heuristic algorithms. JASSS. 2014. .
  82. 82.
    Estrella R, Cattrysse D, van Orshoven J. Comparison of three ideal point-based multi-criteria decision methods for afforestation planning. Forests. 2014;5:3222–40.CrossRefGoogle Scholar
  83. 83.
    Dragicevic A, Boulanger V, Bruciamacchie M, Chauchard S, Dupouey J-L, Stenger A. Network connectivity value. J Theor Biol. 2017;419:310–22. .CrossRefPubMedGoogle Scholar
  84. 84.
    Drechsler M, Surun C. Land-use and species tipping points in a coupled ecological-economic model. Ecol Complex. 2018;36:86–91. .CrossRefGoogle Scholar
  85. 85.
    Gimona A, Polhill JG. Exploring robustness of biodiversity policy with a coupled metacommunity and agent-based model. J Land Use Sc. 2011;6:175–93. .CrossRefGoogle Scholar
  86. 86.
    Epanchin-Niell RS, Wilen JE. Individual and cooperative management of invasive species in human-mediated landscapes. Am J Agric Econ. 2014;97:180–98. .CrossRefGoogle Scholar
  87. 87.
    Harasimowicz S, Janus J, Bacior S, Gniadek J. Shape and size of parcels and transport costs as a mixed integer programming problem in optimization of land consolidation. Comp Elec Agr. 2017;140:113–22. .CrossRefGoogle Scholar
  88. 88.
    • Groeneveld J, Müller B, Buchmann CM, Dressler G, Guo C, Hase N, et al. Theoretical foundations of human decision-making in agent-based land use models—a review. Env Mod Softw. 2017;87:39–48. doi: . Comprehensive review analysing how economic and behavioural theories have been implemented in to agent-based models.
  89. 89.
    Simon HA. Rational choice and the structure of the environment. Psych Rev. 1956;63:129–38. .CrossRefGoogle Scholar
  90. 90.
    Salvini G, Ligtenberg A, van Paassen A, Bregt AK, Avitabile V, Herold M. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. J Environ Manage. 2016;172:58–70. .CrossRefPubMedGoogle Scholar
  91. 91.
    Zagaria C, CJE S, Kizos T, Gounaridis D, Verburg PH. Cultural landscapes and behavioral transformations: an agent-based model for the simulation and discussion of alternative landscape futures in East Lesvos, Greece. Land Use Policy. 2017;65:26–44. .CrossRefGoogle Scholar
  92. 92.
    Ou G, Tan S, Zhou M, Lu S, Tao Y, Zhang Z, et al. An interval chance-constrained fuzzy modeling approach for supporting land-use planning and eco-environment planning at a watershed level. J Environ Manage. 2017;204:651–666. doi: .
  93. 93.
    Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization: Princeton University Press; 2009.Google Scholar
  94. 94.
    Cai Y. Computational methods in environmental and resource economics. Annu Rev Resour Econ. 2019. .CrossRefGoogle Scholar
  95. 95.
    Sun Z, Lorscheid I, Millington JD, Lauf S, Magliocca NR, Groeneveld J, et al. Simple or complicated agent-based models?: A complicated issue. Env Modell Softw. 2016;86:56–67. doi: .
  96. 96.
    Murray-Rust D, Robinson DT, Guillem E, Karali E, Rounsevell M. An open framework for agent based modelling of agricultural land use change. Env Mod Softw. 2014;61:19–38. .CrossRefGoogle Scholar
  97. 97.
    Reidsma P, Jeuffroy M-H. Farming systems analysis and design for sustainable intensification: new methods and assessments. Eur J Agron. 2017;82:203–5. .CrossRefGoogle Scholar
  98. 98.
    Hettig E, Lay J, Sipangule K. Drivers of households’ land-use decisions: a critical review of micro-level studies in tropical regions. Land. 2016;5:32. .CrossRefGoogle Scholar
  99. 99.
    Shah P, Mallory ML, Ando AW, Guntenspergen GR. Fine-resolution conservation planning with limited climate-change information. Conserv Biol. 2017;31:278–89. .CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Forest Economics and Sustainable Land-use Planning, Faculty of Forest Sciences and Forest EcologyUniversity of GoettingenGöttingenGermany
  2. 2.Institute of Forest Management, TUM School of Life Sciences Weihenstephan, Department of Ecology and Ecosystem ManagementTechnische Universität MünchenMunichGermany
  3. 3.Department of Ecosystem Modelling, Faculty of Forest Sciences and Forest EcologyUniversity of GoettingenGoettingenGermany

Personalised recommendations