Advertisement

Current Landscape Ecology Reports

, Volume 3, Issue 4, pp 57–72 | Cite as

Changing Thermal Landscapes: Merging Climate Science and Landscape Ecology through Thermal Biology

  • A. Justin NowakowskiEmail author
  • Luke O. Frishkoff
  • Mickey Agha
  • Brian D. Todd
  • Brett R. Scheffers
Effects of Landscape Structure on Conservation of Species and Biodiversity (J Watling, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Effects of Landscape Structure on Conservation of Species and Biodiversity

Abstract

Climate change and habitat modification both alter thermal environments and species distributions. However, these drivers of global change are rarely studied together, even though many species are experiencing climate change and habitat modification simultaneously. Here we review existing literature and propose avenues for merging the largely disparate lines of climate and landscape ecological research using temperature exposure and species’ thermal sensitivity as a shared framework. The integration of research on climate and landscape change is in the early stages and lags behind research focused solely on the ecological effects of climate change. Recent studies highlight important mismatches between the resolution of widely used climate datasets and ecological processes, which can be addressed through detailed mapping of thermal landscapes and the microclimates within them. Furthermore, the thermal niches of species, evolved under past climates, can predict the responses of species to changing microclimates associated with habitat modification; this suggests that microclimates and thermal niches may together act as a common filter, reassembling communities in response to both climate and landscape change. There is a need to further integrate microclimate and thermal niche data into landscape ecological research to advance our basic understanding of the combined effects of landscape and climate change and to provide actionable data for climate adaptation strategies that largely focus on activities at landscape scales.

Keywords

Thermal niche Temperature Microclimate Connectivity Redistribution Climate change 

Notes

Acknowledgments

We thank M. Veiman for comments of the manuscript and J. James for valuable aural input.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Jetz W, Wilcove DS, Dobson AP. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 2007;5(6):e157.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Mantyka-Pringle CS, Martin TG, Rhodes JR. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Chang Biol. 2012;18(4):1239–52.  https://doi.org/10.1111/j.1365-2486.2011.02593.x.CrossRefGoogle Scholar
  3. 3.
    Potter KA, Arthur Woods H, Pincebourde S. Microclimatic challenges in global change biology. Glob Chang Biol. 2013;19(10):2932–9.  https://doi.org/10.1111/gcb.12257.CrossRefPubMedGoogle Scholar
  4. 4.
    Bonebrake TC, Brown CJ, Bell JD, Blanchard JL, Chauvenet A, ChampionC, et al. Managing consequences of climate‐driven species redistribution requires integration of ecology, conservation and social science. Bio Rev. 2018;93(1):284–305.PubMedGoogle Scholar
  5. 5.
    Noble IR, Huq S, Anokhin YA, Carmin J, Goudou D, Lansigan FP, et al. Adaptation needs and options. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al., editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, United Kingdom and New York, NY, USA. Cambridge: Cambridge University Press; 2014. p. 833–68.Google Scholar
  6. 6.
    Oliver TH, Morecroft MD. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev Clim Chang. 2014;5(3):317–35.  https://doi.org/10.1002/wcc.271.CrossRefGoogle Scholar
  7. 7.
    Sirami C, Caplat P, Popy S, Clamens A, Arlettaz R, Jiguet F, et al. Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Glob Ecol Biogeogr. 2017;26(4):385–94.  https://doi.org/10.1111/geb.12555.CrossRefGoogle Scholar
  8. 8.
    Watling JI, Donnelly MA. Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conserv Biol. 2006;20(4):1016–25.  https://doi.org/10.1111/j.1523-1739.2006.00482.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv. 2015;1(2):e1500052.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nowakowski AJ, Dewoody JA, Fagan ME, Willoughby JR, Donnelly MA. Mechanistic insights into landscape genetic structure of two tropical amphibians using field-derived resistance surfaces. Mol Ecol. 2015;24(3):580–95.  https://doi.org/10.1111/Mec.13052.CrossRefPubMedGoogle Scholar
  11. 11.
    Todd BD, Luhring TM, Rothermel BB, Gibbons JW. Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity. J Appl Ecol. 2009;46(3):554–61.Google Scholar
  12. 12.
    Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL. Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Global Ecol Biogeogr. 2011;20(2):209–17.  https://doi.org/10.1111/j.1466-8238.2010.00586.x.CrossRefGoogle Scholar
  13. 13.
    Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520(7545):45–50.  https://doi.org/10.1038/nature14324.CrossRefPubMedGoogle Scholar
  14. 14.
    Todd BD, Andrews KM. Response of a reptile guild to forest harvesting. Conserv Biol. 2008;22(3):753–61.PubMedGoogle Scholar
  15. 15.
    Hanski I, Schulz T, Wong SC, Ahola V, Ruokolainen A, Ojanen SP. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Nat Commun. 2017;8:14504.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Karp DS, Mendenhall CD, Sandí RF, Chaumont N, Ehrlich PR, Hadly EA, et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett. 2013;16(11):1339–47.PubMedGoogle Scholar
  17. 17.
    Kormann U, Scherber C, Tscharntke T, Klein N, Larbig M, Valente JJ, et al. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proc. R. Soc. B, 2016;283(1823), 20152347.PubMedGoogle Scholar
  18. 18.
    Scheffers BR, De Meester L, Bridge TC, Hoffmann AA, Pandolfi JM, Corlett RT, et al. The broad footprint of climate change from genes to biomes to people. Science. 2016;354(6313):aaf7671.PubMedGoogle Scholar
  19. 19.
    Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333(6045):1024–6.PubMedGoogle Scholar
  20. 20.
    Sheridan JA, Bickford D. Shrinking body size as an ecological response to climate change. Nat Clim Chang. 2011;1(8):401–6.Google Scholar
  21. 21.
    Todd BD, Scott DE, Pechmann JHK, Gibbons JW. Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proc R Soc B-Biol Sci. 2011;278(1715):2191–7.  https://doi.org/10.1098/rspb.2010.1768.CrossRefGoogle Scholar
  22. 22.
    Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C. Adapting to climate change: a perspective from evolutionary physiology. Clim Res. 2010;43(1/2):3–15.Google Scholar
  23. 23.
    Fey SB, Siepielski AM, Nusslé S, Cervantes-Yoshida K, Hwan JL, Huber ER, et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc Natl Acad Sci U S A. 2015;112(4):1083–8.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42.PubMedGoogle Scholar
  25. 25.
    Tingley MW, Beissinger SR. Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology. 2013;94(3):598–609.PubMedGoogle Scholar
  26. 26.
    Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1596):1665–79.  https://doi.org/10.1098/rstb.2012.0005.CrossRefGoogle Scholar
  27. 27.
    Scheffers BR, Edwards DP, Diesmos A, Williams SE, Evans TA. Microhabitats reduce animal's exposure to climate extremes. Glob Chang Biol. 2014;20(2):495–503.  https://doi.org/10.1111/gcb.12439.CrossRefPubMedGoogle Scholar
  28. 28.
    Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci U S A. 2014;111(15):5610–5.  https://doi.org/10.1073/pnas.1316145111.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lenoir J, Hattab T, Pierre G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography. 2017;40(2):253–66.  https://doi.org/10.1111/ecog.02788.CrossRefGoogle Scholar
  30. 30.
    Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA. Does forest fragmentation cause an increase in forest temperature? Ecol Res. 2016;32(1):81–8.  https://doi.org/10.1007/s11284-016-1411-6.CrossRefGoogle Scholar
  31. 31.
    Tuff KT, Tuff T, Davies KF. A framework for integrating thermal biology into fragmentation research. Ecol Lett. 2016;19(4):361–74.  https://doi.org/10.1111/ele.12579.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008;6(12):e325.PubMedCentralGoogle Scholar
  33. 33.
    Carroll C. Role of climatic niche models in focal-species-based conservation planning: assessing potential effects of climate change on northern spotted owl in the Pacific Northwest. USA Biol Conserv. 2010;143(6):1432–7.Google Scholar
  34. 34.
    Loiselle BA, Graham CH, Goerck JM, Ribeiro MC. Assessing the impact of deforestation and climate change on the range size and environmental niche of bird species in the Atlantic forests. Brazil J Biogeography. 2010;37(7):1288–301.  https://doi.org/10.1111/j.1365-2699.2010.02285.x.CrossRefGoogle Scholar
  35. 35.
    Bateman BL, Pidgeon AM, Radeloff VC, VanDerWal J, Thogmartin WE, Vavrus SJ, et al. The pace of past climate change vs. potential bird distributions and land use in the United States. Glob Chang Biol. 2016;22(3):1130–44.PubMedGoogle Scholar
  36. 36.
    Prince K, Lorrilliere R, Barbet-Massin M, Leger F, Jiguet F. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts. PLoS One. 2015;10(2):e0117850.  https://doi.org/10.1371/journal.pone.0117850.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hockey PAR, Sirami C, Ridley AR, Midgley GF, Babiker HA. Interrogating recent range changes in South African birds: confounding signals from land use and climate change present a challenge for attribution. Divers Distrib. 2011;17(2):254–61.  https://doi.org/10.1111/j.1472-4642.2010.00741.x.CrossRefGoogle Scholar
  38. 38.
    Jarzyna MA, Porter WF, Maurer BA, Zuckerberg B, Finley AO. Landscape fragmentation affects responses of avian communities to climate change. Glob Chang Biol. 2015;21(8):2942–53.  https://doi.org/10.1111/gcb.12885.CrossRefPubMedGoogle Scholar
  39. 39.
    Jarzyna MA, Zuckerberg B, Finley AO, Porter WF. Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landsc Ecol. 2016;31(10):2275–90.  https://doi.org/10.1007/s10980-016-0399-1.CrossRefGoogle Scholar
  40. 40.
    Blaum N, Schwager M, Wichmann MC, Rossmanith E. Climate induced changes in matrix suitability explain gene flow in a fragmented landscape - the effect of interannual rainfall variability. Ecography. 2012;35(7):650–60.  https://doi.org/10.1111/j.1600-0587.2011.07154.x.CrossRefGoogle Scholar
  41. 41.
    Pilliod DS, Arkle RS, Robertson JM, Murphy MA, Funk WC. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape. Ecol Evol. 2015;5(18):3979–94.  https://doi.org/10.1002/ece3.1634.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Virkkala R, Poyry J, Heikkinen RK, Lehikoinen A, Valkama J. Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecol Evol. 2014;4(15):2991–3003.  https://doi.org/10.1002/ece3.1162.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Popescu VD, Rozylowicz L, Cogalniceanu D, Niculae IM, Cucu AL. Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change. PLoS One. 2013;8(11):e79330.  https://doi.org/10.1371/journal.pone.0079330.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Watling JI, Braga L. Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landsc Ecol. 2015;  https://doi.org/10.1007/s10980-015-0198-0.Google Scholar
  45. 45.
    Woods HA, Dillon ME, Pincebourde S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J Therm Biol. 2015;54:86–97.  https://doi.org/10.1016/j.jtherbio.2014.10.002.CrossRefPubMedGoogle Scholar
  46. 46.
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965–78.  https://doi.org/10.1002/joc.1276.CrossRefGoogle Scholar
  47. 47.
    Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, et al. Does size matter for dispersal distance? Glob Ecol Biogeogr. 2007;16(4):415–25.Google Scholar
  48. 48.
    Scheffers BR, Evans TA, Williams SE, Edwards DP. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol Lett. 2014;10(12):20140819.  https://doi.org/10.1098/rsbl.2014.0819.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pringle RM, Webb JK, Shine R. Canopy structure, microclimate, and habitat selection by a nocturnal snake, Hoplocephalus bungaroides. Ecology. 2003;84(10):2668–79.Google Scholar
  50. 50.
    González del Pliego P, Scheffers BR, Basham EW, Woodcock P, Wheeler C, Gilroy JJ, et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol Conserv. 2016;201:385–95.  https://doi.org/10.1016/j.biocon.2016.07.038.CrossRefGoogle Scholar
  51. 51.
    Pincebourde S, Murdock CC, Vickers M, Sears MW. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr Comp Biol. 2016;56(1):45–61.  https://doi.org/10.1093/icb/icw016.CrossRefPubMedGoogle Scholar
  52. 52.
    Pincebourde S, Suppo C. The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity. Integr Comp Biol. 2016;56(1):85–97.  https://doi.org/10.1093/icb/icw014.CrossRefPubMedGoogle Scholar
  53. 53.
    Goller M, Goller F, French SS. A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecol Evol. 2014;4(17):3319–29.  https://doi.org/10.1002/ece3.1141.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shi H, Paull D, Wen Z, Broome L. Thermal buffering effect of alpine boulder field microhabitats in Australia: implications for habitat management and conservation. Biol Conserv. 2014;180:278–87.Google Scholar
  55. 55.
    Scheffers BR, Shoo L, Phillips B, Macdonald SL, Anderson A, VanDerWal J, et al. Vertical (arboreality) and horizontal (dispersal) movement increase the resilience of vertebrates to climatic instability. Global Ecology and Biogeography 2017;26(7), 787–798.Google Scholar
  56. 56.
    Scheffers BR, Phillips BL, Shoo LP. Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs. Global Ecology and Conservation. 2014;2:37–46.Google Scholar
  57. 57.
    Robinson D, Warmsley A, Nowakowski AJ, Reider KE, Donnelly MA. The value of remnant trees in pastures for a neotropical poison frog. J Trop Ecol. 2013;29:345–52.  https://doi.org/10.1017/S0266467413000382.CrossRefGoogle Scholar
  58. 58.
    Senior RA, Hill JK, González del Pliego P, Goode LK, Edwards DP. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol Evol. 2017;7(19):7897–908.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Nowakowski AJ, Watling JI, Whitfield SM, Todd BD, Kurz DJ, Donnelly MA. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Conserv Biol. 2017;31(1):96–105.PubMedGoogle Scholar
  60. 60.
    Laurance WF. Forest-climate interactions in fragmented tropical landscapes. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359(1443):345–52.  https://doi.org/10.1098/rstb.2003.1430.CrossRefGoogle Scholar
  61. 61.
    Sears MW, Raskin E, Angilletta MJ Jr. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr Comp Biol. 2011;51(5):666–75.  https://doi.org/10.1093/icb/icr111.CrossRefPubMedGoogle Scholar
  62. 62.
    Hannah L, Flint L, Syphard AD, Moritz MA, Buckley LB, McCullough IM. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol. 2014;29(7):390–7.  https://doi.org/10.1016/j.tree.2014.04.006.CrossRefPubMedGoogle Scholar
  63. 63.
    Grau HR, Aide M. Globalization and land-use transitions in Latin America. Ecol Soc. 2008;13(2).Google Scholar
  64. 64.
    Joppa LN, Pfaff A. High and far: biases in the location of protected areas. PLoS One. 2009;4(12):e8273.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Poage MA, Chamberlain CP. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci. 2001;301(1):1–15.  https://doi.org/10.2475/Ajs.301.1.1.CrossRefGoogle Scholar
  66. 66.
    Frishkoff LO, Hadly EA, Daily GC. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob Chang Biol. 2015;21(11):3901–16.PubMedGoogle Scholar
  67. 67.
    Yoshino M. Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal. 1984;8(3):235–50.Google Scholar
  68. 68.
    Kearney MR, Isaac AP, Porter WP. microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Sci Data. 2014;1:140006.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Cosentino BJ, Schooley RL, Phillips CA. Connectivity of agroecosystems: dispersal costs can vary among crops. Landscape Ecol. 2011;26(3):371–9.  https://doi.org/10.1007/s10980-010-9563-1.CrossRefGoogle Scholar
  70. 70.
    Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos. 2011;120(1):1–8.Google Scholar
  71. 71.
    Villegas JC, Breshears DD, Zou CB, Royer PD. Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zone J. 2010;9(3):537.  https://doi.org/10.2136/vzj2009.0032.CrossRefGoogle Scholar
  72. 72.
    Chen J, Franklin JF, Spies TA. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecol Appl. 1995;5(1):74–86.Google Scholar
  73. 73.
    Campbell-Staton SC, Cheviron ZA, Rochette N, Catchen J, Losos JB, Edwards SV. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science. 2017;357(6350):495–8.PubMedGoogle Scholar
  74. 74.
    Latimer CE, Zuckerberg B. Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography. 2017;40(1):158–70.  https://doi.org/10.1111/ecog.02551.CrossRefGoogle Scholar
  75. 75.
    Xing S, Bonebrake TC, Tang CC, Pickett EJ, Cheng W, Greenspan SE, et al. Cool habitats support darker and bigger butterflies in Australian tropical forests. Ecol Evol. 2016;6(22):8062–74.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kearney M, Shine R, Porter WP. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci U S A. 2009;106(10):3835–40.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Peaden JM, Nowakowski AJ, Tuberville TD, Buhlmann KA, Todd BD. Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. Biol Conserv. 2017;214:13–22.Google Scholar
  78. 78.
    Saudreau M, Ezanic A, Adam B, Caillon R, Walser P, Pincebourde S. Temperature heterogeneity over leaf surfaces: the contribution of the lamina microtopography. Plant Cell Environment. 2017;40(10):2174–88.  https://doi.org/10.1111/pce.13026.CrossRefGoogle Scholar
  79. 79.
    Buckley LB, Huey RB. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob Chang Biol. 2016;22(12):3829–42.PubMedGoogle Scholar
  80. 80.
    Solomon S, Plattner GK, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A. 2009;106(6):1704–9.  https://doi.org/10.1073/pnas.0812721106.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Huang S-P, Porter WP, Tu M-C, Chiou C-R. Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard. Oecologia. 2014;175(1):25–35.PubMedGoogle Scholar
  82. 82.
    Nadeau CP, Urban MC, Bridle JR. Coarse climate change projections for species living in a fine-scaled world. Glob Chang Biol. 2017;23(1):12–24.  https://doi.org/10.1111/gcb.13475.CrossRefPubMedGoogle Scholar
  83. 83.
    WMO. Guidelines on climate observation networks and systems. Geneva: Switzerland: World Meteorological Organization; 2003.Google Scholar
  84. 84.
    Storlie C, Merino-Viteri A, Phillips B, VanDerWal J, Welbergen J, Williams S. Stepping inside the niche: microclimate data are critical for accurate assessment of species9 vulnerability to climate change. Biol Lett. 2014;10(9):20140576.PubMedPubMedCentralGoogle Scholar
  85. 85.
    McCullough EC, Porter WP. Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology. 1971;52(6):1008–15.Google Scholar
  86. 86.
    Gates DM. Biophysical Ecology. Springer, New York, 1980; p 611.Google Scholar
  87. 87.
    Porter W, Mitchell J, Beckman W, DeWitt C. Behavioral implications of mechanistic ecology. Oecologia. 1973;13(1):1–54.PubMedGoogle Scholar
  88. 88.
    Fridley JD. Downscaling climate over complex terrain: high finescale (< 1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). J Appl Meteorol Climatol. 2009;48(5):1033–49.Google Scholar
  89. 89.
    Storlie C, Phillips B, VanDerWal J, Williams S. Improved spatial estimates of climate predict patchier species distributions. Divers Distrib. 2013;19(9):1106–13.Google Scholar
  90. 90.
    Frey SJ, Hadley AS, Johnson SL, Schulze M, Jones JA, Betts MG. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv. 2016;2(4):e1501392.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Agha M, Price SJ, Nowakowski AJ, Augustine B, Todd BD. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather. Dis Aquat Organ. 2017;124(2):91–100.PubMedGoogle Scholar
  92. 92.
    Roznik EA, Alford RA. Using pairs of physiological models to estimate temporal variation in amphibian body temperature. J Therm Biol. 2014;45:22–9.PubMedGoogle Scholar
  93. 93.
    Greenspan SE, Bower DS, Webb RJ, Roznik EA, Stevenson LA, Berger L, et al. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct Ecol. 2017;  https://doi.org/10.1111/1365-2435.12944.Google Scholar
  94. 94.
    Scheffers BR, Edwards DP, Macdonald SL, Senior RA, Andriamahohatra LR, Roslan N, et al. Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica. 2017;49(1):35–44.Google Scholar
  95. 95.
    Faye E, Rebaudo F, Yánez-Cajo D, Cauvy-Fraunié S, Dangles O, Tatem A. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods Ecol Evol. 2016;7(4):437–46.  https://doi.org/10.1111/2041-210x.12488.CrossRefGoogle Scholar
  96. 96.
    Agha M, Augustine B, Lovich JE, Delaney D, Sinervo B, Murphy MO, et al. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii). J Therm Biol. 2015;49:119–26.PubMedGoogle Scholar
  97. 97.
    Tracy CR. A model of the dynamic exchanges of water and energy between a terrestrial amphibian and its environment. Ecol Monogr. 1976;46(3):293–326.Google Scholar
  98. 98.
    Varner J, Dearing MD. The importance of biologically relevant microclimates in habitat suitability assessments. PLoS One. 2014;9(8):e104648.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Senior RA, Hill JK, Benedick S, Edwards DP. Tropical forests are thermally buffered despite intensive selective logging. Glob Chang Biol. 2017;24:1267–78.PubMedGoogle Scholar
  100. 100.
    Godsoe W, Jankowski J, Holt RD, Gravel D. Integrating biogeography with contemporary niche theory. Trends Ecol Evol. 2017;32:488–99.PubMedGoogle Scholar
  101. 101.
    Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A. 2008;105(18):6668–72.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett. 2009;12(4):334–50.  https://doi.org/10.1111/j.1461-0248.2008.01277.x.CrossRefPubMedGoogle Scholar
  103. 103.
    Sunday JM, Bates AE, Dulvy NK. Thermal tolerance and the global redistribution of animals. Nat Clim Chang. 2012;2(9):686–90.  https://doi.org/10.1038/nclimate1539.CrossRefGoogle Scholar
  104. 104.
    Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3):231–59.Google Scholar
  105. 105.
    Barnagaud J-Y, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F. Relating habitat and climatic niches in birds. PLoS One. 2012;7(3):e32819.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Nadeau CP, Urban MC, Bridle JR. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol Evol. 2017;32(10):786–800.PubMedGoogle Scholar
  107. 107.
    Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, et al. Life history and spatial traits predict extinction risk due to climate change. Nat Clim Chang. 2014;4(3):217–21.Google Scholar
  108. 108.
    Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett. 2016;19(11):1372–85.PubMedGoogle Scholar
  109. 109.
    Huey RB, Stevenson R. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool. 1979;19:357–66.Google Scholar
  110. 110.
    Navas CA, Gomes FR, Carvalho JE. Thermal relationships and exercise physiology in anuran amphibians: integration and evolutionary implications. Comp Biochem Physiol A Mol Integr Physiol. 2008;151(3):344–62.  https://doi.org/10.1016/j.cbpa.2007.07.003.CrossRefPubMedGoogle Scholar
  111. 111.
    Hertz PE, Huey RB, Stevenson R. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat. 1993;142(5):796–818.PubMedGoogle Scholar
  112. 112.
    Sears MW, Angilletta MJ Jr. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am Nat. 2015;185(4):E94–E102.  https://doi.org/10.1086/680008.CrossRefPubMedGoogle Scholar
  113. 113.
    Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. Oxford: Oxford University Press; 2009.Google Scholar
  114. 114.
    Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL. Heat freezes niche evolution. Ecol Lett. 2013;16(9):1206–19.PubMedGoogle Scholar
  115. 115.
    Jessop TS, Letnic M, Webb JK, Dempster T. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment. Proc Biol Sci. 2013;280(1768):20131444.  https://doi.org/10.1098/rspb.2013.1444.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Rittenhouse TA, Harper EB, Rehard LR, Semlitsch RD. The role of microhabitats in the desiccation and survival of anurans in recently harvested oak–hickory forest. Copeia. 2008;2008(4):807–14.Google Scholar
  117. 117.
    Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJÁ, et al. Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B Biol Sci. 2009;276(1664):1939–48.Google Scholar
  118. 118.
    Navas CA, Gomes FR, De Domenico EA. Physiological ecology and conservation of anuran amphibians. In: de Andrade DV, Bevier CR, de Carvalho JE, editors. Amphibian and Reptile Adaptations to the Environment: Interplay Between Physiology and Behavior. Boca Raton: CRC Press; 2016. p. 155–88.Google Scholar
  119. 119.
    Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagran-Santa Cruz M, et al. Erosion of lizard diversity by climate change and altered thermal niches. Science. 2010;328(5980):894–9.  https://doi.org/10.1126/science.1184695.CrossRefPubMedGoogle Scholar
  120. 120.
    Clusella-Trullas S, Blackburn TM, Chown SL. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat. 2011;177(6):738–51.PubMedGoogle Scholar
  121. 121.
    Nowakowski AJ, Watling JI, Thompson ME, Brusch IV, GA, Catenazzi A, Whitfield SM, et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol Lett. 2018;21(3), 345–355.PubMedGoogle Scholar
  122. 122.
    Kivivuori LA, Lahdes EO. How to measure the thermal death of Daphnia? A comparison of different heat tests and effects of heat injury. J Therm Biol. 1996;21(5):305–11.Google Scholar
  123. 123.
    Simon MN, Ribeiro PL, Navas CA. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. J Therm Biol. 2015;48:36–44.  https://doi.org/10.1016/j.jtherbio.2014.12.008.CrossRefPubMedGoogle Scholar
  124. 124.
    Scheffers BR, Brunner RM, Ramirez SD, Shoo LP, Diesmos A, Williams SE. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica. 2013;45(5):628–35.Google Scholar
  125. 125.
    Greenspan SE, Bower DS, Roznik EA, Pike DA, Marantelli G, Alford RA, et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci Rep. 2017;7(1):9349.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Richter-Boix A, Katzenberger M, Duarte H, Quintela M, Tejedo M, Laurila A. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution. 2015;69(8):2210–26.  https://doi.org/10.1111/evo.12711.CrossRefPubMedGoogle Scholar
  127. 127.
    Llewelyn J, Macdonald SL, Hatcher A, Moritz C, Phillips BL, Franklin J. Intraspecific variation in climate-relevant traits in a tropical rainforest lizard. Divers Distrib. 2016;22(10):1000–12.  https://doi.org/10.1111/ddi.12466.CrossRefGoogle Scholar
  128. 128.
    Grigg JW, Buckley LB. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biol Lett. 2013;9(2):20121056.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Hoffmann AA, Chown SL, Clusella-Trullas S, Fox C. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol. 2013;27(4):934–49.  https://doi.org/10.1111/j.1365-2435.2012.02036.x.CrossRefGoogle Scholar
  130. 130.
    Clusella-Trullas S, Chown SL. Lizard thermal trait variation at multiple scales: a review. J Comp Physiol B. 2014;184(1):5–21.PubMedGoogle Scholar
  131. 131.
    Munoz MM, Stimola MA, Algar AC, Conover A, Rodriguez AJ, Landestoy MA, et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc R Soc Lond B Biol Sci. 2014;281(1778):20132433.Google Scholar
  132. 132.
    Angilletta MJ Jr, Wilson RS, Niehaus AC, Sears MW, Navas CA, Ribeiro PL. Urban physiology: city ants possess high heat tolerance. PLoS One. 2007;2(2):e258.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Briscoe NJ, Handasyde KA, Griffiths SR, Porter WP, Krockenberger A, Kearney MR. Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biol Lett. 2014;10(6):20140235.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Gordon G, Brown A, Pulsford T. A koala (Phascolarctos cinereus Goldfuss) population crash during drought and heatwave conditions in South-Western Queensland. Austral Ecology. 1988;13(4):451–61.Google Scholar
  135. 135.
    Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.Google Scholar
  136. 136.
    Welbergen JA, Klose SM, Markus N, Eby P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc B Biol Sci. 2008;275(1633):419–25.  https://doi.org/10.1098/rspb.2007.1385.CrossRefGoogle Scholar
  137. 137.
    Sears MW, Angilletta MJ Jr, Schuler MS, Borchert J, Dilliplane KF, Stegman M, et al. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc Natl Acad Sci U S A. 2016;113(38):10595–600.  https://doi.org/10.1073/pnas.1604824113.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lima SL, Zollner PA. Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol. 1996;11(3):131–5.PubMedGoogle Scholar
  139. 139.
    Nowakowski AJ, Jimenez BO, Allen M, Diaz-Escobar M, Donnelly MA. Landscape resistance to movement of the poison frog, Oophaga pumilio, in the lowlands of northeastern Costa Rica. Anim Conserv. 2013;16(2):188–97.  https://doi.org/10.1111/j.1469-1795.2012.00585.x.CrossRefGoogle Scholar
  140. 140.
    Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, et al. Microclimate in forest ecosystem and landscape ecology: variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience. 1999;49(4):288–97.Google Scholar
  141. 141.
    Albright TP, Mutiibwa D, Gerson AR, Smith EK, Talbot WA, O’Neill JJ, et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc Natl Acad Sci U S A. 2017;114:2283–8. 201613625PubMedPubMedCentralGoogle Scholar
  142. 142.
    Tracy CR, Christian KA, Burnip N, Austin BJ, Cornall A, Iglesias S, et al. Thermal and hydric implications of diurnal activity by a small tropical frog during the dry season. Austral Ecol. 2013;38(4):476–83.  https://doi.org/10.1111/j.1442-9993.2012.02416.x.CrossRefGoogle Scholar
  143. 143.
    Tracy CR, Christian KA, Tracy CR. Not just small, wet, and cold: effects of body size and skin resistance on thermoregulation and arboreality of frogs. Ecology. 2010;91(5):1477–84.PubMedGoogle Scholar
  144. 144.
    Nowakowski AJ, Veiman-Echeverria M, Kurz DJ, Donnelly MA. Evaluating connectivity for tropical amphibians using empirically derived resistance surfaces. Ecol Appl. 2015;25(4):928–42.PubMedGoogle Scholar
  145. 145.
    McCain CM, Colwell RK. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol Lett. 2011;14(12):1236–45.PubMedGoogle Scholar
  146. 146.
    Peterman WE, Semlitsch RD. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics. Oecologia. 2014;176(2):357–69.  https://doi.org/10.1007/s00442-014-3041-4.CrossRefPubMedGoogle Scholar
  147. 147.
    Rothermel BB, Semlitsch RD. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conserv Biol. 2002;16(5):1324–32.Google Scholar
  148. 148.
    Tingley R, Shine R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the Australian semi-desert. PLoS One. 2011;6(10):e25979.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Frishkoff LO, Karp DS, Flanders JR, Zook J, Hadly EA, Daily GC, et al. Climate change and habitat conversion favour the same species. Ecol Lett. 2016;19(9):1081–90.PubMedGoogle Scholar
  150. 150.
    Karp DS, Frishkoff LO, Echeverri A, Zook J, Juárez P, Chan K. Agriculture erases climate-driven β-diversity in neotropical bird communities. Glob Chang Biol. 2017;24:338–49.PubMedGoogle Scholar
  151. 151.
    Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017;355(6332):eaai9214.PubMedGoogle Scholar
  152. 152.
    Tayleur CM, Devictor V, Gaüzère P, Jonzén N, Smith HG, Lindström Å, et al. Regional variation in climate change winners and losers highlights the rapid loss of cold-dwelling species. Divers Distrib. 2016;22(4):468–80.  https://doi.org/10.1111/ddi.12412.CrossRefGoogle Scholar
  153. 153.
    Clavero M, Villero D, Brotons L. Climate change or land use dynamics: do we know what climate change indicators indicate? PLoS One. 2011;6(4):e18581.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Bowler D, Böhning-Gaese K. Improving the community-temperature index as a climate change indicator. PLoS One. 2017;12(9):e0184275.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Bush A, Mokany K, Catullo R, Hoffmann A, Kellermann V, Sgrò C, et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol Lett. 2016;19(12):1468–78.PubMedGoogle Scholar
  156. 156.
    Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecol Lett. 2008;11(12):1351–63.  https://doi.org/10.1111/j.1461-0248.2008.01250.x.CrossRefPubMedGoogle Scholar
  157. 157.
    Ockendon N, Baker DJ, Carr JA, White EC, Almond RA, Amano T, et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob Chang Biol. 2014;20(7):2221–9.  https://doi.org/10.1111/gcb.12559.CrossRefPubMedGoogle Scholar
  158. 158.
    Laurance WF, Camargo JLC, Fearnside PM, Lovejoy TE, Williamson GB, Mesquita RCG, et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol Rev. 2018;93(1):223–47.  https://doi.org/10.1111/brv.12343.CrossRefPubMedGoogle Scholar
  159. 159.
    Urban MC, Tewksbury JJ, Sheldon KS. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc R Soc Lond B Biol Sci. 2012;279(1735):2072–80.  https://doi.org/10.1098/rspb.2011.2367.CrossRefGoogle Scholar
  160. 160.
    Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ, Beauvais W, et al. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv. 2018;4(1):eaao2314.  https://doi.org/10.1126/sciadv.aao2314.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Nowakowski AJ, Whitfield SM, Eskew EA, Thompson ME, Rose JP, Caraballo BL, et al. Infection risk decreases with increasing mismatch in host and pathogen environmental tolerances. Ecol Lett. 2016;19(9):1051–61.  https://doi.org/10.1111/ele.12641.CrossRefPubMedGoogle Scholar
  162. 162.
    Kormann U, Scherber C, Tscharntke T, Klein N, Larbig M, Valente JJ. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proc R Soc Lond B Biol Sci. 2016;283(1823):20152347.  https://doi.org/10.1098/rspb.2015.2347.CrossRefGoogle Scholar
  163. 163.
    Terborgh J, Lopez L, Nuñez, Rao M, Shahabuddin G, Orihuela G, et al. Ecological meltdown in predator-free forest fragments. Science. 2001;294(5548):1923–6.PubMedGoogle Scholar
  164. 164.
    Feeley KJ, Rehm EM. Amazon's vulnerability to climate change heightened by deforestation and man-made dispersal barriers. Glob Chang Biol. 2012;18(12):3606–14.  https://doi.org/10.1111/gcb.12012.CrossRefGoogle Scholar
  165. 165.
    Nunez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, et al. Connectivity planning to address climate change. Conserv Biol. 2013;27(2):407–16.  https://doi.org/10.1111/cobi.12014.CrossRefPubMedGoogle Scholar
  166. 166.
    Damschen EI, Haddad NM, Orrock JL, Tewksbury JJ, Levey DJ. Corridors increase plant species richness at large scales. Science. 2006;313(5791):1284–6.PubMedGoogle Scholar
  167. 167.
    McRae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology. 2008;89(10):2712–24.PubMedGoogle Scholar
  168. 168.
    Nakicenovic N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, et al. Special report on emissions scenarios, working group III, Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press; 2000. 595pp ISBN 0.2000;521(80493):0Google Scholar
  169. 169.
    Bartelt PE, Klaver RW, Porter WP. Modeling amphibian energetics, habitat suitability, and movements of western toads, Anaxyrus (=Bufo) boreas, across present and future landscapes. Ecol Model. 2010;221(22):2675–86.  https://doi.org/10.1016/j.ecolmodel.2010.07.009.CrossRefGoogle Scholar
  170. 170.
    Krosby M, Tewksbury J, Haddad NM, Hoekstra J. Ecological connectivity for a changing climate. Conserv Biol. 2010;24(6):1686–9.PubMedGoogle Scholar
  171. 171.
    Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, et al. Assessing species vulnerability to climate change. Nat Clim Chang. 2015;5(3):215–24.  https://doi.org/10.1038/nclimate2448.CrossRefGoogle Scholar
  172. 172.
    Nowakowski AJ, Thompson ME, Donnelly MA, & Todd BD. Amphibian sensitivity to habitat modification is associated with population trends and species traits. Glob Ecol Biogeogr. 2017;26(6), 700–712.Google Scholar
  173. 173.
    Dallalio EA, Brand AB, Grant EHC. Climate-mediated competition in a high-elevation salamander community. J Herpetol. 2017;51(2):190–6.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • A. Justin Nowakowski
    • 1
    Email author
  • Luke O. Frishkoff
    • 2
  • Mickey Agha
    • 1
  • Brian D. Todd
    • 1
  • Brett R. Scheffers
    • 3
  1. 1.Department of Wildlife, Fish, and Conservation BiologyUniversity of California, DavisDavisUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
  3. 3.Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleUSA

Personalised recommendations