History friendly models: retrospective and future perspectives

  • Gianluca CaponeEmail author
  • Franco Malerba
  • Richard R. Nelson
  • Luigi Orsenigo
  • Sidney G. Winter
Regular Article


Twenty years ago, we introduced the history friendly modeling approach to formally study industrial dynamics. In this paper, we look retrospectively at the results that the history friendly literature has achieved so far and what are the challenges ahead of us. We present the main principles, methods, and building blocks of the approach, and then we illustrate it through two applications. The first one investigates the impact of entry in the mainframes segment of the computer industry. The second application studies the effect of different industrial policies in uncertain technological environments.


History friendly models Industry evolution Computer industry Pharmaceutical industry Entry Industrial policy 



  1. Balland, P. A., Boschma, R., Crespo, J., & Rigby, D. L. (2018). Smart specialization policy in the European Union: Relatedness, knowledge complexity and regional diversification. Regional Studies. (forthcoming).Google Scholar
  2. Barca, F., McCann, P., & Rodríguez-Pose, A. (2012). The case for regional development intervention: Place-based versus place-neutral approaches. Journal of Regional Science, 52, 134–152.CrossRefGoogle Scholar
  3. Boschma, R., & Capone, G. (2015). Institutions and diversification: Related versus unrelated diversification in a Varieties of capitalism framework. Research Policy, 44, 1902–1914.CrossRefGoogle Scholar
  4. Brenner, T., Murmann, J. P. (2003). The use of simulations in developing robust knowledge about causal processes: Methodological considerations and an application to industrial evolution. Papers on Economics and Evolution #0303. Jena: Max Planck Institute.Google Scholar
  5. Brenner, T., & Murmann, J. P. (2016). Using simulation experiments to test historical explanations: The development of the German dye industry 1857–1913. Journal of Evolutionary Economics, 26, 907–932.CrossRefGoogle Scholar
  6. Capone, G., Malerba, F., & Orsenigo, L. (2013). Are switching costs always effective in creating first-mover advantage? The moderating role of demand and technological regimes. Long Range Planning, 46, 348–368.CrossRefGoogle Scholar
  7. Capone, G., Malerba, F., & Orsenigo, L. (2019). Spinoffs in context: Entry and performance across industries. Industrial and Corporate Change. (forthcoming).Google Scholar
  8. Cortinovis, N., Xiao, J., Boschma, R., & van Oort, F. G. (2017). Quality of government and social capital as drivers of regional diversification in Europe. Journal of Economic Geography, 17, 1179–1208.CrossRefGoogle Scholar
  9. Cowan, R., & Foray, D. (2002). Evolutionary economics and the counterfactual threat: On the nature and role of counterfactual history as an empirical tool in economics. Journal of Evolutionary Economics, 12, 539–562.CrossRefGoogle Scholar
  10. Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Englewood Cliffs: Prentice Hall.Google Scholar
  11. Dawid, H. (2006). Agent-based models of innovation and technological change. In L. Tesfatsion & K. Judd (Eds.), Handbook of computational economics. Agent-based computational economics (Vol. 2, pp. 1235–1272). Amsterdam: Elsevier.Google Scholar
  12. Dosi, G., & Marengo, L. (2016). The dynamics of organizational structures and performances under diverging distributions of knowledge and different power structures. Journal of Institutional Economics, 11, 535–559.CrossRefGoogle Scholar
  13. Dosi, G., Pereira, M., Roventini, A., Virgillito, M. E. (2018). The labour-augmented K S model: A laboratory for the analysis of institutional and policy regimes. Accessed 24 Jan 2019.
  14. Fagiolo, G., Guerini, M., Lamperti, F., Moneta, A., & Roventini, A. (2019). Validation of agent-based models in economics and finance. In C. Beisbart & N. J. Saam (Eds.), Computer simulation validation. Fundamental concepts, methodological frameworks, and philosophical perspectives. Cham, CH: Springer.Google Scholar
  15. Fontana, R., & Zirulia, L. (2015). “…then came Cisco, and the rest is history”: A history friendly model of the local area networking industry. Journal of Evolutionary Economics, 25, 875–899.CrossRefGoogle Scholar
  16. Foray, D., David, P. A., Hall, B. (2009). Smart specialization: The concept. knowledge for growth, prospects for science, technology and innovation, Report, EUR24047, European Union.Google Scholar
  17. Garavaglia, C. (2010). Modelling industrial dynamics with “History-friendly” simulations. Structural Change and Economic Dynamics, 21, 258–275.CrossRefGoogle Scholar
  18. Garavaglia, C., Malerba, F., & Orsenigo, L. (2006). Entry, market structure and innovation in a history-friendly model of the evolution of the pharmaceutical industry. In M. Mazzucato & G. Dosi (Eds.), Knowledge accumulation and industry evolution. The case of pharma-biotech (pp. 234–265). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Garavaglia, C., Malerba, F., Orsenigo, L., & Pezzoni, M. (2013). A simulation model of the evolution of the Pharmaceutical industry: A history friendly model. Journal of Artificial Societies and Social Simulation, 16(4), 5.CrossRefGoogle Scholar
  20. Grabner, C. (2016). Agent-based computational models—a formal heuristic for institutionalist pattern modelling? Journal of Institutional Economics, 12, 241–261.CrossRefGoogle Scholar
  21. Grazzini, J., & Richiardi, M. (2015). Estimation of ergodic agent-based models by simulated minimum distance. Journal of Economic Dynamics and Control, 51, 148–165.CrossRefGoogle Scholar
  22. Grazzini, J., Richiardi, M., & Tsionas, M. (2017). Bayesian estimation of agent-based models. Journal of Economic Dynamics and Control, 77, 26–47.CrossRefGoogle Scholar
  23. Guerini, M., & Moneta, A. (2017). A method for agent-based models validation. Journal of Economic Dynamics and Control, 82, 125–141.CrossRefGoogle Scholar
  24. Hausmann, R., & Rodrik, D. (2003). Economic development as self-discovery. Journal of Development Economics, 72, 603–633.CrossRefGoogle Scholar
  25. Kim, C. W., & Lee, K. (2003). Innovation, technological regimes and organizational selection in industry evolution: A ‘history friendly model’ of the DRAM industry. Industrial and Corporate Change, 12, 1195–1221. Scholar
  26. Klepper, S. (2002). The capabilities of new firms and the evolution of the US automobile industry. Industrial and Corporate Change, 11, 645–666.CrossRefGoogle Scholar
  27. Klepper, S. (2016). Experimental capitalism: The nanoeconomics of American high-tech industries. Princeton: Princeton University Press.Google Scholar
  28. Lamperti, F., Roventini, A., & Sani, A. (2018). Agent-based model calibration using machine learning surrogates. Journal of Economic Dynamics and Control, 90, 366–389.CrossRefGoogle Scholar
  29. Landini, F., Lee, K., & Malerba, F. (2017). A history-friendly model of the successive changes in industrial leadership and the catch-up by latecomers. Research Policy, 46, 431–446. Scholar
  30. Landini, F., & Malerba, F. (2017). Public policy and catching up by developing countries in global industries: A simulation model. Cambridge Journal of Economics, 41, 927–960.CrossRefGoogle Scholar
  31. Lee, K. (2013). Schumpeterian analysis of economic catch-up: Knowledge, path-creation, and the middle-income trap. New York: Cambridge University Press.CrossRefGoogle Scholar
  32. Levinthal, D. (1997). Adaptation on rugged landscapes. Management Science, 43, 934–950.CrossRefGoogle Scholar
  33. Li, D., Capone, G., & Malerba, F. (2019). The “Long March” to catch-up: A history-friendly model of China’s mobile communications industry. Research Policy, 48, 649–664. Scholar
  34. Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31, 247–261.CrossRefGoogle Scholar
  35. Malerba, F., & Adams, P. (2014). Sectoral systems of innovation. In M. Dodgson, D. Gann, & N. Phillips (Eds.), The oxford handbook of innovation management (pp. 183–203). Oxford: Oxford University Press.Google Scholar
  36. Malerba, F., & Nelson, R. R. (Eds.). (2012). Economic development as a learning process: variation across sectoral systems. Cheltenham: Edward Elgar.Google Scholar
  37. Malerba, F., Nelson, R. R., Orsenigo, L., & Winter, S. G. (1999). ‘History-friendly’ models of industry evolution: The computer industry. Industrial and Corporate Change, 8, 3–40.CrossRefGoogle Scholar
  38. Malerba, F., Nelson, R. R., Orsenigo, L., & Winter, S. G. (2001). Competition and industrial policies in a history-friendly model of the evolution of the computer industry. International Journal of Industrial Organization, 19, 635–664.CrossRefGoogle Scholar
  39. Malerba, F., Nelson, R. R., Orsenigo, L., & Winter, S. G. (2007). Demand, innovation, and the dynamics of market structure: The role of experimental users and diverse preferences. Journal of Evolutionary Economics, 17, 371–399.CrossRefGoogle Scholar
  40. Malerba, F., Nelson, R. R., Orsenigo, L., & Winter, S. G. (2008a). Vertical integration and disintegration of computer firms: A history-friendly model of the coevolution of the computer and semiconductor industries. Industrial and Corporate Change, 17, 197–231.CrossRefGoogle Scholar
  41. Malerba, F., Nelson, R. R., Orsenigo, L., & Winter, S. G. (2008b). Public policies and changing boundaries of firms in a history-friendly model of the co-evolution of the computer and semiconductors industries. Journal of Economic Behaviour and Organization, 67, 355–380.CrossRefGoogle Scholar
  42. Malerba, F., Nelson, R. R., Orsenigo, L., & Winter, S. G. (2016). Innovation and the evolution of industries: History friendly models. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Malerba, F., & Orsenigo, L. (2002). Innovation and market structure in the dynamics of the pharmaceutical industry and biotechnology: Towards a history-friendly model. Industrial and Corporate Change, 11, 667–703.CrossRefGoogle Scholar
  44. Malerba, F., & Orsenigo, L. (2010). User-producer relation, innovation and the evolution of market structures under alternative contractual regimes. Structural Change and Economic Dynamics, 21, 26–40.CrossRefGoogle Scholar
  45. Malerba, F., Yoon, M. (2011). Modelling the evolution of firm boundaries: A history-friendly model of the emergence of the fabless ecosystem. Working Paper, Milan and Seoul.Google Scholar
  46. Mazzucato, M. (2013). The entrepreneurial state: debunking public vs. private sector myths. London: Anthem Press.Google Scholar
  47. Mazzucato, M., Cimoli, M., Dosi, G., Stiglitz, J., Landesmann, M., Pianta, M., et al. (2015). Forum: Which industrial policy does Europe need? Intereconomics, 50(3), 120–155.CrossRefGoogle Scholar
  48. Mowery, D. C., & Nelson, R. R. (Eds.). (1999). Sources of industrial leadership: studies of seven industries. New York: Cambridge University Press.Google Scholar
  49. Nelson, R. R., Dosi, G., Helfat, C. E., Pyka, A., Winter, S. G., Saviotti, P. P., et al. (2018). Modern evolutionary economics. An overview. New York: Cambridge University Press.CrossRefGoogle Scholar
  50. Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change. Cambridge: Harvard University Press.Google Scholar
  51. Pereira, M., & Dequech, D. (2015). A History-Friendly Model of the Internet Access Market: The Case of Brazil. In A. Pyka & J. Foster (Eds.), The evolution of economic and innovation systems (pp. 579–610). New York: Springer.Google Scholar
  52. Pianta, M. (2014). An industrial policy for Europe. Seoul Journal of Economics, 27, 277–305.Google Scholar
  53. Rodrik, D. (2004). Industrial policy for the twenty-first century. Working paper, John F. Kennedy School of Government, Harvard University.Google Scholar
  54. Santarelli, E., & Vivarelli, M. (2002). Is subsidizing entry an optimal policy? Industrial and Corporate Change, 11, 39–52.CrossRefGoogle Scholar
  55. Simon, H. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69, 99–118.CrossRefGoogle Scholar
  56. Tesfatsion, L. (2002). Agent-based computational economics: Growing economies from the bottom up. Artificial Life, 8, 55–82.CrossRefGoogle Scholar
  57. Windrum, P., Fagiolo, G., & Moneta, A. (2007). Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Simulation, 10(2), 8.Google Scholar

Copyright information

© Eurasia Business and Economics Society 2019

Authors and Affiliations

  1. 1.Department of Economics and ManagementUniversity of PisaPisaItaly
  2. 2.ICRIOS, Bocconi UniversityMilanItaly
  3. 3.Department of Management and TechnologyBocconi UniversityMilanItaly
  4. 4.Columbia UniversityNew YorkUSA
  5. 5.Scuola Universitaria Superiore IUSS PaviaPaviaItaly
  6. 6.Science Policy Research UnitUniversity of SussexBrightonUK
  7. 7.The Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations