Advertisement

Analytical Solution of a Fractional Differential Equation in the Theory of Viscoelastic Fluids

  • Sahar SaghaliEmail author
  • Mohammad Javidi
  • Farhad Dastmalchi Saei
Original Paper
  • 24 Downloads

Abstract

The aim of this paper is to present analytical solutions of fractional delay differential equations of an incompressible generalized Oldroyd-B fluid with fractional derivatives of Caputo type. Using a modification of the method of separation of variables the main equation with non-homogeneous boundary conditions is transformed into an equation with homogeneous boundary conditions, and the resulting solutions are then expressed in terms of Green functions via Laplace transforms. Different situations for the unsteady flows of a generalized Oldroyd-B fluid, including a flow with a moving plate, are considered via examples.

Keywords

Oldroyd-B fluid Fractional-order partial differential equations Analytical solutions Delay differential equation Modified separation of variables method Caputo fractional derivatives 

Mathematics Subject Classification

26A33 35R11 76A05 

Notes

References

  1. 1.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)zbMATHGoogle Scholar
  2. 2.
    Diethelm, K., Freed, A.D.: On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity. Springer, Berlin (1999)CrossRefGoogle Scholar
  3. 3.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)Google Scholar
  4. 4.
    Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Limited, Amsterdam (2006)CrossRefGoogle Scholar
  5. 5.
    Fetecau, C., Fetecau, C., Khan, M., Vieru, D.: Decay of a potential vortex in a generalized oldroyd-b fluid. Appl. Math. Comput. 205(1), 497–506 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Khan, M.: The rayleigh-stokes problem for an edge in a viscoelastic fluid with a fractional derivative model. Nonlinear Anal. Real World Appl. 10(5), 3190–3195 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nadeem, S.: General periodic flows of fractional oldroyd-b fluid for an edge. Phys. Lett. A 368(3–4), 181–187 (2007)CrossRefGoogle Scholar
  8. 8.
    Song, D.Y., Jiang, T.Q.: Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified jeffreys model and its application. Rheol. Acta 37(5), 512–517 (1998)CrossRefGoogle Scholar
  9. 9.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co. Pte. Ltd.,. Singapore, ISBN# 9789812817747 (2000)Google Scholar
  10. 10.
    Tong, D., Zhang, X., Zhang, X.: Unsteady helical flows of a generalized oldroyd-b fluid. J. Non-newton. Fluid Mech. 156(1–2), 75–83 (2009)CrossRefGoogle Scholar
  11. 11.
    Haitao, Q., Mingyu, X.: Some unsteady unidirectional flows of a generalized oldroyd-b fluid with fractional derivative. Appl. Math. Model. 33(11), 4184–4191 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fetecau, C., Fetecau, C., Kamran, M., Vieru, D.: Exact solutions for the flow of a generalized oldroyd-b fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate. J. Non-Newton. Fluid Mech. 156(3), 189–201 (2009)CrossRefGoogle Scholar
  13. 13.
    Vieru, D., Fetecau, C., Fetecau, C.: Flow of a generalized oldroyd-b fluid due to a constantly accelerating plate. Appl. Math. Comput. 201(1–2), 834–842 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Shah, S.H.A.M., Khan, M., Qi, H.: Exact solutions for a viscoelastic fluid with the generalized oldroyd-b model. Nonlinear Anal. Real World Appl. 10(4), 2590–2599 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Qi, H., Jin, H.: Unsteady helical flows of a generalized oldroyd-b fluid with fractional derivative. Nonlinear Anal. Real World Appl. 10(5), 2700–2708 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zheng, L., Liu, Y., Zhang, X.: Exact solutions for mhd flow of generalized oldroyd-b fluid due to an infinite accelerating plate. Math. Comput. Model. 54(1–2), 780–788 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hayat, T., Khan, M., Asghar, S.: On the mhd flow of fractional generalized burgers fluid with modified darcys law. Acta Mech. Sin. 23(3), 257–261 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Heris, M.S., Javidi, M.: On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl. Numer. Math. 118, 203–220 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Heris, M.S., Javidi, M.: On fractional backward differential formulas methods for fractional differential equations with delay. Int. J. Appl. Comput. Math. 4(2), 72 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Morgado, M.L., Ford, N.J., Lima, P.M.: Analysis and numerical methods for fractional differential equations with delay. J. Comput. Appl. Math. 252, 159–168 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Čermák, J., Horníček, J., Kisela, T.: Stability regions for fractional differential systems with a time delay. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 108–123 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwalls approach. Math. Comput. Model. 49(3–4), 475–481 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Heris, M.S., Javidi, M.: On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediterr. J. Math. 14(3), 134 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space caputo-riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389(2), 1117–1127 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sanayei, H.R.Z., Talebbeydokhti, N., Rakhshandehroo, G.: Reza Analytical Solutions for Water Infiltration into Unsaturated–Semi-saturated Soils Under Different Water Content Distributions on the Top Boundary. Springer, Berlin (2019)Google Scholar
  27. 27.
    Mahmoudi, M.S., Ebrahimian, A., Bahrami, A.: Higher modes and higher harmonics in the non-contact atomic force microscopy. Int. J. Non-linear Mech. 110, 33–43 (2019)CrossRefGoogle Scholar
  28. 28.
    Zhao, C.-G., Yang, A.-M., Jafari, H., Haghbin, A.: The Yang–Laplace transform for solving the IVPs with local fractional derivative. Abstr. Appl. Anal. 2014, 386459 (2014).  https://doi.org/10.1155/2014/386459 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Department of MathematicsIslamic Azad University Tabriz BranchTabrizIran
  2. 2.Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations