Advertisement

On the Convergence Dynamics of the Sitnikov Problem with Non-spherical Primaries

  • Euaggelos E. ZotosEmail author
  • Md Sanam Suraj
  • Rajiv Aggarwal
  • Amit Mittal
Original Paper
  • 3 Downloads

Abstract

We investigate, using numerical methods, the convergence dynamics of the Sitnikov problem with non-spherical primaries, by applying the Newton–Raphson iterative scheme. In particular, we examine how the oblateness parameter A influences several aspects of the method, such as its speed and efficiency. Color-coded diagrams are used for revealing the convergence basins on the plane of complex numbers. Moreover, we compute the degree of fractality of the convergence basins on the complex space, as a relation of the oblateness, by using different computational tools, such the fractal dimension as well as the (boundary) basin entropy.

Keywords

Sitnikov problem Convergence basins Oblateness Fractal basin boundaries 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abdul-Raheem, A., Singh, J.: Combined effects of perturbations, radiation, and oblateness on the stability of equilibrium points in the restricted three-body problem. Astron. J. 131, 1880–1885 (2006)CrossRefGoogle Scholar
  2. 2.
    Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon–Heiles system. Phys. Rev. E 64, 066208 (2001)CrossRefGoogle Scholar
  3. 3.
    Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)CrossRefGoogle Scholar
  4. 4.
    Daza, A., Wagemakers, A., Georgeot, B., Guéry-Odelin, D., Sanjuán, M.A.F.: Basin entropy: a new tool to analyze uncertainty in dynamical systems. Sci. Rep. 6, 31416 (2016)CrossRefGoogle Scholar
  5. 5.
    Daza, A., Wagemakers, A., Georgeot, B., Guéry-Odelin, D., Sanjuán, M.A.F.: Basin entropy, a measure of final state unpredictability and its application to the chaotic scattering of cold atoms. In: Edelman, M., et al. (eds.) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, Understanding Complex Systems. Springer, Cham (2018)zbMATHGoogle Scholar
  6. 6.
    Douskos, C.N.: Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction. Astrophys. Space Sci. 326, 263 (2010)CrossRefGoogle Scholar
  7. 7.
    Douskos, C.N., Markellos, V.V.: Out-of-plane equilibrium points in the restricted three-body problem with oblateness. Astron. Astrophys. 446, 357–360 (2006)CrossRefGoogle Scholar
  8. 8.
    Douskos, C., Kalantonis, V., Markellos, P., Perdios, E.: On Sitnikov-like motions generating new kinds of 3D periodic orbits in the R3BP with prolate primaries. Astrophys. Space Sci. 337, 99–106 (2012)CrossRefGoogle Scholar
  9. 9.
    McMillan, W.D.: An integrable case in the restricted problem of three bodies. Astron. J. 27, 11–13 (1911)CrossRefGoogle Scholar
  10. 10.
    Moser, J.: Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies Number 77. Princeton University Press and University of Tokio Press, Princeton (1973)Google Scholar
  11. 11.
    Motter, A.E., Lai, Y.C.: Dissipative chaotic scattering. Phys. Rev. E 65, 015205 (2001)CrossRefGoogle Scholar
  12. 12.
    Nagler, J.: Crash test for the Copenhagen problem. Phys. Rev. E 69, 066218 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nagler, J.: Crash test for the restricted three-body problem. Phys. Rev. E 71, 026227 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  15. 15.
    Pavanini, P.: Sopra una nuova categoria di soluzioni periodiche nel problema dei tre corpi. Ann. Math. SerieIII, Tomo XIII (1907)Google Scholar
  16. 16.
    Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  17. 17.
    Seoane, J.M., Aguirre, J., Sanjuán, M.A.F., Lai, Y.C.: Basin topology in disipattive chaotic scattering. Chaos 16, 023101 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Seoane, J.M., Sanjuán, M.A.F.: Exponential decay and scaling laws in noisy chaotic scattering. Phys. Lett. A 372, 110–116 (2008)CrossRefGoogle Scholar
  19. 19.
    Sharma, R.K., Subba Rao, P.V.: Collinear equilibria and their characteristic exponents in the restricted three-body problem when the primaries are oblate spheroids. Celest. Mech. 12, 189–201 (1975)CrossRefGoogle Scholar
  20. 20.
    Sitnikov, K.: The existence of oscillatory motions in the three-body problem. Dokl. Akad. Nauk. SSSR 133, 303–306 (1960)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)zbMATHGoogle Scholar
  22. 22.
    Wolfram, S.: The Mathematica Book. Wolfram Media, Champaign (2003)zbMATHGoogle Scholar
  23. 23.
    Zotos, E.E.: Comparing the fractal basins of attraction in the Hill problem with oblateness and radiation. Astrophys. Space Sci. 362, 190 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zotos, E.E.: Comparing the basins of attraction for several methods in the circular Sitnikov problem with spheroid primaries. Astrophys. Space Sci. 363, 113 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zotos, E.E., Suraj, MdS, Aggarwal, R., Satya, S.K.: Investigating the basins of convergence in the circular Sitnikov three-body problem with non-spherical primaries. Few Body Syst. 59, 69 (2018). (Paper I)CrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  • Euaggelos E. Zotos
    • 1
    Email author
  • Md Sanam Suraj
    • 2
  • Rajiv Aggarwal
    • 3
  • Amit Mittal
    • 4
  1. 1.Department of Physics, School of ScienceAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Mathematics, Sri Aurobindo CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Department of Mathematics, Deshbandhu CollegeUniversity of DelhiNew DelhiIndia
  4. 4.Department of Mathematics, ARSD CollegeUniversity of DelhiNew DelhiIndia

Personalised recommendations