Approximate Analytical Solution of the Nonlinear Bethe Equation

  • O. González-GaxiolaEmail author
  • G. Chacón-Acosta
  • A. León-Ramírez
Original Paper


Bethe equation is a nonlinear differential equation that appears in nuclear physics and that plays an important role in various applications ranging from basic science to engineering and medicine. Please confirm the corresponding author is correctly identified and amend if necessary. It describes the behavior of a charged particle when it enters a material medium. Despite its importance, it is unusual to find exact solutions for this non-linear equation in the literature and practically all the related studies focus on contrasting the predictions given by approximate solutions with the corresponding experiments. In this work, we solve approximately this equation and present a new approach to obtain the solution through the combined use of the Adomian Decomposition Method and the Laplace Transform (LADM). Additionally, we illustrate our approach by solving some examples in which the initial conditions are considered within the numerical ranges typical of experimental situations. Our results indicate that LADM is highly accurate and can be considered as a very useful and valuable method in the study of this equation.


Bethe equation Stopping power Nonlinear equations Analytical approximate solution Adomian decomposition method 

Mathematics Subject Classification

34L30 34L25 65D15 



We are very grateful to the anonymous referees for their invaluable comments and suggestions which helped much to improve the quality of the paper.


  1. 1.
    González-Gaxiola, O., Santiago, J.A., Ruiz de Chávez, J.: Solution for the nonlinear relativistic harmonic oscillator via Laplace-Adomian decomposition method. Int. J. Appl. Comput. Math. 3(3), 2627–2638 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Khan, Y., Vázquez-Leal, H., Wu, Q.: An efficient iterated method for mathematical biology model. Neural Comput. Appl. 23(3–4), 677–682 (2013). CrossRefGoogle Scholar
  3. 3.
    Duan, J.S., Randolph, R., Wazwaz, A.M.: Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the Adomian decomposition method. J. Math. Chem. 53(4), 1054–1067 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    González-Gaxiola, O., Ruiz de Chávez, J., Santiago, J.A.: A nonlinear option pricing model through the Adomian decomposition method. Int. J. Appl. Comput. Math. 2(4), 453–467 (2016). MathSciNetCrossRefGoogle Scholar
  5. 5.
    Adomian, G.: Nonlinear Stochastic Operator Equations. Academic Press, Orlando (1986)zbMATHGoogle Scholar
  6. 6.
    Cherruault, Y., Adomian, G.: Decomposition methods: a new proof of convergence. Math. Comput. Model. 18, 103–106 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Abbaoui, K., Cherruault, Y.: Convergence of Adomian’s method applied to differential equations. Comput. Math. Appl. 28(5), 103–109 (1994). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Khuri, S.A.: A Laplace decomposition algorithm applied to a class of nonlinear differential equations. J. Appl. Math. 1(4), 141–155 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wazwaz, A.M.: The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Appl. Math. Comput. 216(4), 1304–1309 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mompart, J., Domingo, C., Baixeras, C., Fenández, F.: Calculation of range and energy loss of fast ions with \(Z\ge 30\) using a corrected Bethe-Bloch formula. Nucl. Instrum. Methods Phys. Res. B 107, 56–61 (1996)CrossRefGoogle Scholar
  11. 11.
    Powell, C.J., Llovet, X., Salvat, F.: Use of the Bethe equation for inner-shell ionization by electron impact. J. Appl. Phys. 119, 184904 (2016). CrossRefGoogle Scholar
  12. 12.
    Sternheimer, R.M., Peierls, R.F.: General expression for the density effect for the ionization loss of charged particles. Phys. Rev. B 3(11), 3681–3692 (1971). CrossRefGoogle Scholar
  13. 13.
    Emfietzoglou, D., Cucinotta, F.A., Nikjoo, H.: A complete dielectric response model for liquid water: a solution of the Bethe ridge problem. Radiat. Res. 164, 202–211 (2005)CrossRefGoogle Scholar
  14. 14.
    Nassef, M.H., Kinsara, A.A.: Occupational radiation dose for medical workers at a university hospital. J. Taibah Univ. Sci. 11(6), 1259–1296 (2017). CrossRefGoogle Scholar
  15. 15.
    Newhauser, W.D., Zhang, R.: The physics of proton therapy. Phys. Med. Biol. 60, R155–R209 (2015). CrossRefGoogle Scholar
  16. 16.
    Zaluzec, N.J.: Theoretical and experimental x-ray peak/background ratios and implications for energy-dispersive spectrometry in the next-generation analytical electron microscope. Microsc. Microanal. 22, 230–236 (2016). CrossRefGoogle Scholar
  17. 17.
    Leiter, D.J., Leiter, S.L.: A to Z of Physicists. Facts on file Inc, New York (2003)Google Scholar
  18. 18.
    Ziegler, J.F.: Stopping of energetic light ions in elemental matter. J. Appl. Phys. 85(3), 1249–1272 (1999). CrossRefGoogle Scholar
  19. 19.
    Bethe, H.: Bremsformel für elektronen relativistischer geschwindigkeit. Z. Phys. 76, 293–299 (1932). CrossRefzbMATHGoogle Scholar
  20. 20.
    Wazwaz, A.M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 111(1), 33–51 (2000). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Babolian, E., Javadi, S.: New method for calculating Adomian polynomials. Appl. Math. Comput. 153, 253–259 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Duan, J.S.: Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput. 217, 6337–6348 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Duan, J.S.: New recurrence algorithms for the nonclassic Adomian polynomials. Appl. Math. Comput. 62, 2961–2977 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hosseini, M.M., Nasabzadeh, H.: On the convergence of Adomian decomposition method. Appl. Math. Comput. 182(1), 536–543 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Grimes, D.R., Warren, D.R., Partridge, M.: An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range. Sci. Rep. 7(1), 9781 (2017). CrossRefGoogle Scholar
  26. 26.
    Nguyen-Truong, H.T.: Modified Bethe formula for low-energy electron stopping power without fitting parameters. Ultramicroscopy 149, 26–33 (2015). CrossRefGoogle Scholar
  27. 27.
    He, J.H.: Application of He Chengtian’s interpolation to Bethe equation. Comput. Math. Appl. 58(11–12), 2427–2430 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Acton, J.R., Squire, P.T.: Solving Equations with Physical Understanding. Adam Hilger Ltd, Bristol (1985)Google Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Departamento de Matemáticas Aplicadas y SistemasUniversidad Autónoma Metropolitana-CuajimalpaMexico CityMexico
  2. 2.Posgrado en Ciencias Naturales e IngenieríaUniversidad Autónoma Metropolitana-CuajimalpaMexico CityMexico

Personalised recommendations