A Robust Rotated-Hybrid Riemann Scheme for Multidimensional Inviscid Compressible Flows

  • Pascalin Tiam KapenEmail author
  • Tchuen Ghislain
Original Paper


A robust algorithm is investigated for multidimensional inviscid compressible flows, based on rotated Riemann solver framework. Indeed, the proposed method combines the TV-HLL and Roe schemes. The upwind direction is imposed by the velocity-difference vector. Then, the TV-HLL solver is applied in the direction perpendicular to shocks in order to suppress carbuncle. In addition, the Roe solver is applied across shear layers to minimize the amount of dissipation. To assess the capabilities of the present method, numerous test problems (2D and 3D) are simulated.


TV-HLL Roe Rotated Riemann scheme Inviscid flows 



  1. 1.
    Godunov, S.K.: A difference scheme for numerical computation of discontinuous solutions of equations of fluid dynamics. Math. Sbornik 47, 271 (1959)zbMATHGoogle Scholar
  2. 2.
    Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25, 294 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Roe, P.L.: Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Quirk, J.J.: ICASE Report, pp. 92–64 (1992)Google Scholar
  6. 6.
    Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamics equations with applications to finite difference methods. J. Comput. Phys. 40, 263–293 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Anderson, W., Thomas, J.L., Van Leer, B.: Comparison of finite volume flux vector splittings for the Euler equations. AIAA J. 24, 1453–1460 (1986)CrossRefGoogle Scholar
  8. 8.
    Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liou, M.S., Wada, Y.: A flux splitting scheme with high-resolution and robustness for discontinuities. In: AIAA paper, No. 94–0083 (1994)Google Scholar
  10. 10.
    Liou, M.S.: A sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364–382 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kim, K.H., Lee, J.H., Rho, O.H.: An improve of AUSM schemes by introducing the pressure-based weight functions. Comput. Fluids 27(3), 311–346 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kim, K.H., Kim, C., Rho, O.: Methods for accurate computations of hypersonic flows I. AUSMPW+ scheme. J. Comput. Phys. 174, 38–80 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liou, M.S.: A sequel to AUSM, Part II: AUSM+-up for all speeds. J. Comput. Phys. 214, 137–170 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Edwards, J.R.: A low-diffusion flux-splitting scheme for Navier–Stokes calculations. Comput. Fluid 26, 635–659 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Edwards, J.R., Franklin, R.K., Liou, M.S.: Low-diffusion flux-splitting methods for real fluid flows with phase transition. AIAA J. 38, 1624–1633 (2000)CrossRefGoogle Scholar
  16. 16.
    Ihm, S.W., Kim, C.: Computations of homogeneous-equilibrium two-phase flows with accurate and efficient shock-stable schemes. AIAA J. 46, 3012–3037 (2008)CrossRefGoogle Scholar
  17. 17.
    Toro, E.F., Vázquez-Cendón, M.E.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tiam, K.P., Tchuen, G.: A new flux splitting scheme based on Toro-Vazquez and HLL schemes for the Euler equations. J. Comput. Methods Phys. 2014, 1–13 (2014)CrossRefGoogle Scholar
  19. 19.
    Tiam, K.P., Tchuen, G.: An extension of the TV-HLL scheme for multi-dimensional compressible flows. Int. J. Comput. Fluid Dyn. 29(3–5), 303–312 (2015)MathSciNetGoogle Scholar
  20. 20.
    Tiam, K.P., Tchuen, G.: Numerical simulation of multi-dimensional inviscid compressible flows by using TV-HLL scheme. Chin. J. Aeronaut. 29(6), 1553–1562 (2016)CrossRefGoogle Scholar
  21. 21.
    Quirk, J.J.: A contribution to the great Riemann solvers debate. Int. J. Numer. Methods Fluids 18, 555–574 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Janhunen, P.: A positive conservative method for magnetohydrodynamics based on HLL and Roe methods. J. Comput. Phys. 166, 649–661 (2000)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Huang, K., Wu, H., Yu, H., Yan, D.: Cure for numerical shock instability in HLLC solver. Int. J. Numer. Methods Fluids 65, 1026–1038 (2011)CrossRefGoogle Scholar
  24. 24.
    Nishikawa, H., Kitamura, K.: Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers. J. Comput. Phys. 227, 2560–2581 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ren, Y.X.: A robust shock-capturing scheme based on rotated Riemann solvers. Comput. Fluids 32, 1379–1403 (2003)CrossRefGoogle Scholar
  26. 26.
    Tchuen, G., Tiam, K.P., Burtschell, Y.: An accurate shock-capturing scheme based on rotated-hybrid Riemann solver: AUFSRR scheme. Int. J. Numer. Methods Heat Fluid Flow 26(5), 1310–1327 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shen, Z., Ya, W., Yuan, G.: A stability analysis of hybrid schemes to cure shock instability. Commun. Comput. Phys. 15(5), 1320–1342 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (1999)CrossRefGoogle Scholar
  29. 29.
    Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: analysis and cures for the “Carbuncle” phenomenon. J. Comput. Phys. 166, 271 (2001)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tchuen, G., Fogang, F., Burtschell, Y., Woafo, P.: Hybrid upwind splitting scheme by combining the approaches of Roe and AUFS for compressible flow problems. Int. J. Eng. Syst. Model. Simul. 3(1/2), 16–25 (2011)Google Scholar
  31. 31.
    Bazhenova, T.V., Gvozdeva, L.G., Nettleton, M.A.: Unsteady interactions of shock waves. Prog. Aerosp. Sci. 21, 249–331 (1984)CrossRefGoogle Scholar
  32. 32.
    Billett, S.J., Toro, E.F.: Unsplit WAF-type schemes for three dimensional hyperbolic conservation laws. In: Toro, E.F., Clarke, J.F. (eds.) Numerical Methods for Wave Propagation, pp. 75–124. Springer, Dordrecht (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.IUT-FV, LISIE/L2MSPUniversity of DschangBandjounCameroon
  2. 2.Université des Montagnes, ISSTBangangtéCameroon

Personalised recommendations