Advertisement

Some Results on Shannon Wavelets and Wavelets Frames

  • S. C. Shiralashetti
  • S. Kumbinarasaiah
Original Paper
  • 12 Downloads

Abstract

In this article, Shannon wavelets are studied together with their properties and we focused on Shannon wavelets and scalar functions through linear algebraic concept such as linearly independent, nested properties and direct product etc. Also, we generated Laguerre wavelets frames and discussed some results on it.

Keywords

Shannon wavelets Laguerre wavelets Frames Direct product Laguerre wavelets Linearly independent 

Mathematics Subject Classification

42C40 42C15 20K25 

Notes

Acknowledgements

Acknowledge the support received from the University Grants Commission (UGC), Govt. of India for Grant under UGC-SAP DRS-III for 2016-2021:F.510/3/DRS-III/2016(SAP-I) Dated: 29th Feb. 2016.

References

  1. 1.
    Cattani, C.: Harmonic wavelets towards the solution of nonlinear PDE. Comput. Math. Appl. 50, 1191–1210 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Shiralashetti, S.C., Kumbinarasaiah, S.: Some results on Haar wavelets matrix through linear algebra. Wavelets Linear Algebra 4(2), 49–59 (2017)Google Scholar
  3. 3.
    Shiralashetti, S.C., Kumbinarasaiah, S.: Cardinal B-spline wavelet based numerical method for the solution of generalized Burgers–Huxley equation. Int. J. Appl. Comput. Math. 4, 73 (2018).  https://doi.org/10.1007/s40819-018-0505-y MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Shiralashetti, S.C., Kumbinarasaiah, S.: Theoretical study on continuous polynomial wavelet bases through wavelet series collocation method for nonlinear Lane–Emden type equations. Appl. Math. Comput. 315, 591–602 (2017)MathSciNetGoogle Scholar
  5. 5.
    Shiralashetti, S.C., Kumbinarasaiah, S.: Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems. Alex. Eng. J. (2017).  https://doi.org/10.1016/j.aej.2017.07.014
  6. 6.
    Cattani, C.: Shannon wavelets for the solution of integrodifferential equations. Math. Probl. Eng. 2010, 1–22 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cattani, C.: Shannon wavelet analysis. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Computational Science ICCS 2007. Lecture Notes in Computer Science, vol. 4488. Springer, Berlin (2007)Google Scholar
  8. 8.
    Cattani, C.: Harmonic wavelet solutions of the Schrodinger equation. Int. J. Fluid Mech. Res. 5, 1–10 (2003)MathSciNetGoogle Scholar
  9. 9.
    Cattani, C., Kudreyko, A.: Application of periodized harmonic wavelets towards solution of eigenvalue problems for integral equations. Math. Probl. Eng. 2010, 1–8 (2010)zbMATHGoogle Scholar
  10. 10.
    Cattani, C.: Fractional calculus and Shannon wavelet. Math. Probl. Eng. 2012, 1–26 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Shi, Z., Li, F.: Numerical solution of high-order differential equations by using periodized Shannon wavelets. Appl. Math. Model. 38, 2235–2248 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cattani, C.: Shannon wavelets theory. Math. Probl. Eng. 2008, 1–24 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part I). IEEE Signal Process. Mag. 86, 1–19 (2007)Google Scholar
  14. 14.
    Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Signal Process. Mag. 115, 1–11 (2007)Google Scholar
  15. 15.
    Heil, C.: A Basis Theory Primer. Applied and Numerical Harmonic Analysis. Springer, New York (1998)Google Scholar
  16. 16.
    Rajaraman, R., Hariharan, G.: An efficient wavelet based spectral method to singular boundary value problems. J. Math. Chem. 53, 2095–2113 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Duggan, R., Goodman, A.: Pointwise bounds for a nonlinear heat conduction model of the human head. Bull. Math. Biol. 48(2), 229–236 (1986)CrossRefGoogle Scholar
  18. 18.
    Zhou, F., Xu, X.: Numerical solution for the linear and nonlinear singular boundary value problems using Lagurre wavelets. Adv. Differ. Equ. (2016).  https://doi.org/10.1186/s13662-016-0754-1

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  1. 1.Department of MathematicsKarnatak University in DharwadDharwadIndia

Personalised recommendations