Advertisement

Exact Solution of the Weak Shock Wave in Non-ideal Gas

  • J. P. Chaudhary
  • L. P. Singh
Original Paper
  • 37 Downloads

Abstract

In the present paper the exact solution of quasilinear hyperbolic system of equations governing the propagation of weak shock waves in a one dimensional non-ideal adiabatic gas flow with generalized geometries is derived. Here the density ahead of the shock front is assumed to vary according to a power law of the distance. The effect of van der Waals parameter on the radius of weak shock wave is analyzed. An analytical expression for the total energy carried by weak shock wave in non-ideal gas is also derived.

Keywords

Non-ideal gas Weak shock Analytical solution Total energy 

Notes

Acknowledgements

J. P. Chaudhary acknowledges the financial support from the CSIR, New Delhi, India, under the SRF scheme.

References

  1. 1.
    Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Wiley-Interscience, New York (1948)zbMATHGoogle Scholar
  2. 2.
    Whitham, B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)zbMATHGoogle Scholar
  3. 3.
    Sharma, V.D., Shyam, R.: Growth and decay of weak discontinuities in radiating gas dynamics. Acta Astronaut. 8, 31–45 (1981)CrossRefGoogle Scholar
  4. 4.
    Anile, A.M.: Propagation of weak shock waves. Wave Motion 6, 571–578 (1984)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Murata, S.: New exact solution of the blast wave problem in gas dynamics. Chaos Solitons Fractals 28, 327–330 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Singh, L.P., Ram, S.D., Singh, D.B.: Exact solution of planar and no planar weak shock wave problem in gas dynamics. Chaos Solitons Fractals 44, 964–967 (2011)CrossRefGoogle Scholar
  7. 7.
    Bira, B., Sekhar, T.R.: Symmetry group analysis and exact solution of isentropic magnetogasdynamics. Indian J. Pure Appl. Math. 44(2), 153–165 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chadha, M., Jena, J.: Singular surface and steepening of waves in a non-ideal gas with dust particles. Comput. Appl. Math. 34(2), 729–739 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Arora, R., Siddiqui, J.: Evolutionary behavior of weak shocks in a non-ideal gas. J. Theor. Appl. Phys. (Open Access) 7, 1–6 (2013)CrossRefGoogle Scholar
  10. 10.
    Vishwakarma, J.P., Nath, G.: A self-similar solution of a shock propagation in a mixture of a non-ideal gas and small solid particles. Meccanica 44, 239–254 (2009)CrossRefGoogle Scholar
  11. 11.
    Wu, C.C., Roberts, P.H.: Structure and stability of a spherical shock wave in a van der Waals gas. Q. J. Mech. Appl. Math. 49(4), 501–543 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jena, J.: Lie-group transformations for self-similar shocks in a gas with dust particles. Math. Methods Appl. Sci. 32, 2035–2049 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Oliveri, F., Speciale, M.P.: Exact solutions to the unsteady equations of perfect gases through Lie group analysis and substitution principles. Int. J. Non-Linear Mech. 37, 257–274 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Arora, R., Tomar, A., Singh, V.P.: Similarity solutions for strong shocks in a non-ideal gas. Math. Model. Anal. 17, 351–365 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Siddiqui, M.J., Arora, R.: An exact similarity solution for spherical shocks in a relaxing gas. Natl. Acad. Sci. Lett. 38, 433–35 (2015)CrossRefGoogle Scholar
  16. 16.
    Bira, B., Sekhar, T.R., Sekhar, G.P.R.: Collision of characteristic shock with weak discontinuity in non-ideal magnetogasdynamics. Comput. Math. Appl. 75(11), 3873–3883 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kuila, S., Sekhar, T.R.: Wave interactions in non-ideal isentropic magnetogasdynamics. Int. J. Appl. Comput. Math 3(3), 1809–1831 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ambika, K., Radha, R.: Riemann problem in non-ideal gasdynamics. Indian J. Pure Appl. Math. 47(3), 501–521 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations