Advertisement

Continuous Review Inventory Model with Normally Distributed Fuzzy Random Variable Demand

  • Wasim Firoz Khan
  • Oshmita Dey
Original Paper
  • 33 Downloads

Abstract

A fuzzy random continuous review inventory model is developed in this paper in order to illustrate a means of quantifying both imprecision and stochastic uncertainty simultaneously when there is significant information (imprecise and/or otherwise) available. Here the annual customer demand is assumed to be continuous fuzzy random variable following normal distribution, because in real life inventory situations, normal distribution is most often used to quantify customer demand information. The associated probability density function of the annual demand is also taken to be fuzzy in nature. The lead-time demand is also taken to be a normally distributed continuous fuzzy random variable by connecting it to the annual demand through the length of the constant lead-time. Under these assumptions, a methodology is proposed to minimize the crisp equivalent of the expected total annual cost and determine the optimal values of the re-order point and order quantity in the process. A numerical example is also presented to illustrate the proposed model and provide managerial insights.

Keywords

Inventory Continuous review system Continuous fuzzy random variable demand Normal distribution Possibilistic mean 

References

  1. 1.
    Adhikary, K., Roy, J., Kar, S.: A distribution-free newsboy problem with fuzzy-random demand. Int. J. Manag. Sci. Eng. Manag. (2017).  https://doi.org/10.1080/17509653.2017.1381051 CrossRefGoogle Scholar
  2. 2.
    Bhuiya, S.K., Chakraborty, D.: A fuzzy random periodic review inventory model involving controllable back-order rate and variable lead-time. Math. Comput. (2015).  https://doi.org/10.1007/978-81-322-2452-521
  3. 3.
    Carlsson, C., Fuller, R.: On possiblistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122, 315–326 (2001)CrossRefGoogle Scholar
  4. 4.
    Chakraborty, D., Bhuiya, S.K.: A continuous review inventory model with fuzzy service level constraint and fuzzy random variable parameters. Int. J. Appl. Comput. Math. 3, 3159–3174 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chang, H.C., Yao, J.S., Ouyang, L.Y.: Fuzzy mixture inventory model with variable lead-time based on probabilistic fuzzy set and triangular fuzzy number. Math. Comput. Model. 39, 287–304 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chang, H.C., Yao, J.S., Ouyang, L.Y.: Fuzzy mixture inventory model involving fuzzy random variable lead time demand and fuzzy total demand. Eur. J. Oper. Res. 169, 65–80 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dey, O., Chakraborty, D.: Fuzzy periodic review system with fuzzy random variable demand. Eur. J. Oper. Res. 198, 113–120 (2009)CrossRefGoogle Scholar
  8. 8.
    Dey, O., Chakraborty, D.: A fuzzy random continuous review inventory system. Int. J. Prod. Econ. 132, 101–106 (2011)CrossRefGoogle Scholar
  9. 9.
    Dey, O., Chakraborty, D.: A fuzzy random periodic review system with variable lead-time and negative exponential crashing cost. Appl. Math. Model. 36, 6312–6322 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dey, O., Giri, B.C., Chakraborty, D.: A fuzzy random continuous review inventory model with a mixture of backorders and lost sales under imprecise chance constraint. Int. J. Oper. Res. 26, 34–51 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dey, O.: A fuzzy random integrated inventory model with imperfect production under optimal vendor investment. Oper. Res. (2017).  https://doi.org/10.1007/s12351-016-0286-1
  12. 12.
    Dutta, P., Chakraborty, D., Roy, A.R.: A single-period inventory model with fuzzy random variable demand. Math. Comput. Model. 41, 915–922 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dutta, P., Chakraborty, D., Roy, A.R.: Continuous review inventory model in mixed fuzzy and stochastic environment. Appl. Math. Comput. 188, 970–980 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    El-Wakeel, M.F., Hala, A.: Constrained probabilistic continuous review inventory system with mixture shortage and stochastic lead time demand. Adv. Nat. Sci. 6, 9–13 (2013)Google Scholar
  15. 15.
    Ghalebsaz-Jeddi, B., Shultes, B.C., Haji, R.: A multi-product continuous review inventory system with stochastic demand, backorders and a budget constraint. Eur. J. Oper. Res. 158, 456–469 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gil, M.A., Lopez-Diaz, M., Ralescu, D.A.: Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 157, 2546–2557 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hadley, G., Whitin, T.M.: Analysis of Inventory Systems. Prentice Hall Inc. Englewood Cliffs: NJ (1963)Google Scholar
  18. 18.
    Handfield, R., Warsing, D., Wu, X.: (Q, r) Inventory policies in a fuzzy uncertain supply chain environment. Eur. J. Oper. Res. Manuf. Logist. 197, 609–619 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hasuike, T., Ishii, H.: On flexible product-mix decision problems under randomness and fuzziness. Omega 37, 770–787 (2009)CrossRefGoogle Scholar
  20. 20.
    Hou, K.L., Lin, L.C.: Optimal production run length and capital investment in quality improvement with an imperfect production process. Int. J. Syst. Sci. 35, 133–137 (2004)CrossRefGoogle Scholar
  21. 21.
    Hsieh, C.H.: Optimization on fuzzy production inventory models. Inf. Sci. 146, 29–40 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kalpakam, S., Sapna, K.P.: A continuous review inventory model with random lifetimes and positive lead-times. Oper. Res. Lett. 16, 115–119 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kao, C., Hsu, W.K.: Lot size-reorder point inventory model with fuzzy demands. Comput. Math. Appl. 43, 1291–1302 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Keller, G., Noori, H.: Impact of investing in quality improvement on the lot size model. OMEGA Int. J. Manag. Sci. 15, 595–601 (1988)CrossRefGoogle Scholar
  25. 25.
    Khan, W.F., Dey, O.: Periodic review inventory model with normally distributed fuzzy random variable demand. Int. J. Syst. Sci.: Oper. Logist. (2017).  https://doi.org/10.1080/23302674.2017.1361481
  26. 26.
    Kumaran, M., Vijayan, T.: Inventory models with a mixture of backorders and lost sales under fuzzy cost. Eur. J. Oper. Res. 189, 105–119 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kurdhi, N.A., Sutanto, K., Prasetyawati, M.V.A.: Continuous review inventory models under service level constraint with probabilistic fuzzy number during uncertain received quantity. Int. J. Serv. Oper. Manag. 23, (2016).  https://doi.org/10.1504/IJSOM.2016.075247 CrossRefGoogle Scholar
  28. 28.
    Kwakernaak, H.: Fuzzy random variables I: definitions and theorems. Inf. Sci. 15, 1–29 (1978)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lee, H.H., Chandra, M.J., Deleveaux, V.J.: Optimal batch size and investment in multistage production systems with scrap. Prod. Plan. Control 8, 586–596 (1997)CrossRefGoogle Scholar
  30. 30.
    Liu, Y.K., Liu, B.: A class of fuzzy random optimization: expected value model. Inf. Sci. 155, 89–102 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Moon, I.K.: Multiproduct economic lot size models with investments costs for setup reduction and quality improvement: review and extensions. Int. J. Prod. Res. 32, 2795–2801 (1994)CrossRefGoogle Scholar
  32. 32.
    Moon, I.K., Shin, E., Sarkar, B.: Min-max distribution free continuous review model with a service level constraint and variable lead time. Appl. Math. Comput. 229(25), 310–315 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Paknejad, M.J., Nasri, F., Asco, J.F.: Defective units in a continuous review (s, Q) system. Int. J. Prod. Res. 33, 2767–2777 (2007)CrossRefGoogle Scholar
  34. 34.
    Panda, D., Rong, M., Maiti, M.: Fuzzy mixture two warehouse inventory model involving fuzzy random variable lead time demand and fuzzy total demand. Cent. Eur. J. Oper. Res. 22, 187–209 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sarkar, B., Moon, I.K.: Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process. Int J Prod Econ 155, 204–213 (2014)CrossRefGoogle Scholar
  37. 37.
    Sarkar, B., Chaudhuri, K., Moon, I.K.: Manufacturing setup cost reduction and quality improvement for the distribution free continuous-review inventory model with a service level. J. Manuf. Syst. 34, 74–82 (2015)CrossRefGoogle Scholar
  38. 38.
    Sarkar, B., Mahapatra, A.S.: Periodic review fuzzy inventory models with variable lead time and fuzzy demand. Int. Trans. Oper. Res. 24(5), 1197–1227 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Shah, N., Soni, H.: Continuous review inventory model for fuzzy price dependent demand. Int. J. Model. Oper. Manag. (2011).  https://doi.org/10.1504/IJMOM.2011.039527 CrossRefGoogle Scholar
  40. 40.
    Shekarian, E., Olugu, E.U., Abdul Rashid, S.H.: Fuzzy inventory models: a comprehensive review. Appl. Soft Comput. 55, 588–621 (2017)CrossRefGoogle Scholar
  41. 41.
    Shin, D., Guchhait, R., Sarkar, B., Mittal, M.: Controllable lead time, service level constraint, and transportation discount in a continuous review inventory model. RAIRO Oper. Res. 50(4–5), 921–934 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Soni, H.N., Patel, K.A.: Continuous review inventory model with reducing lost sales rate under fuzzy stochastic demand and variable lead time. Int. J. Procure. Manag. 8, 546–569 (2015)CrossRefGoogle Scholar
  43. 43.
    Soni, H.N., Sarkar, B., Joshi, M.: Demand uncertainty and learning in fuzziness in a continuous review inventory model. J. Intell Fuzzy Syst. 33, 2595–2608 (2017)CrossRefGoogle Scholar
  44. 44.
    Taleizadeh, A.A., Niaki, S.T., Aryanezhad, M.B.: A hybrid method of Pareto, Topsis and genetic algorithm to optimize multi-product multi-constraint inventory control systems with random fuzzy replenishments. Math. Comput. Model. 49, 1044–1057 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Taleizadeh, A.A., Niaki, S.T., Meibodi, R.G.: Replenish-up-to multi-chance-constraint inventory control system under fuzzy random lost-sale and backordered quantities. Knowl.-Based Syst. 53, 147–156 (2013)CrossRefGoogle Scholar
  46. 46.
    Tutuncu, G.Y., Akoz, O., Apaydn, A., Petrovic, D.: Continuous review inventory control in the presence of fuzzy costs. Int. J. Prod. Econ. 113, 775–784 (2008)CrossRefGoogle Scholar
  47. 47.
    Wang, X.: Continuous review inventory model with variable lead time in a fuzzy random environment. Expert Syst. Appl. 38, 11715–11721 (2011)CrossRefGoogle Scholar
  48. 48.
    Wang, L., Qing-Liang, F., Zeng, Y.: Continuous review inventory models with a mixture of backorders and lost sales under fuzzy demand and different decision situations. Expert Syst. Appl. 39, 4181–418 (2012)CrossRefGoogle Scholar
  49. 49.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  50. 50.
    Zipkin, P.: Stochastic lead-times in continuous-time inventory models. Naval Res. Logist. 33, 763–774 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Department of MathematicsTechno India UniversityWest BengalIndia

Personalised recommendations