Advertisement

On the Self-Similar, Wright-Function Exact Solution for Early-Time, Anomalous Diffusion in Random Networks: Comparison with Numerical Results

  • Juan C. Padrino
Original Paper

Abstract

Recently, Zhang and Padrino in (Int J Multiph Flow 92:70–81, 2017) derived an equation for diffusion in random networks consisting of junction pockets and connecting channels by applying the ensemble average method to the mass conservation principle. The resulting integro-differential equation was solved numerically using the finite volume method for the test case of one-dimensional diffusion in the half-line. For early time, they found that the numerical predictions of pocket mass density depend on the similarity variable \(x t^{-1/4}\), describing sub-diffusion, instead of \(x t^{-1/2}\) as in ordinary diffusion. They argue that the sub-diffusive trend is the result of the time required to establish a linear concentration profile inside a channel. By theoretical analysis of the diffusion equation for small time, they confirmed this finding. Nevertheless, they did not present an exact solution for the small-time limit to compare with. Here, starting with their small-time leading order diffusion equation in (xt) space, we use elements of fractional calculus to cast it into a form for which an analytical solution has been given in the literature for the same boundary and initial conditions in terms of the Wright function (Gorenflo et al. in J Comput Appl Math 118(1):175–191, 2000). This solution, in turn, is written in terms of generalized hypergeometric functions, readily available in calculus software packages. Comparing predictions from the exact solution with Zhang and Padrino’s numerical results leads to excellent agreement, serving as validation of their numerical approach.

Keywords

Diffusion Anomalous diffusion Fractional calculus Self-similarity Porous media Fractional differential equations 

Notes

Acknowledgements

We acknowledge support from Los Alamos National Laboratory LDRD 20140002DR project. We are grateful to Duan Z. Zhang for enriching discussions and helpful criticism of the manuscript.

References

  1. 1.
    Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lenzi, E.K., Mendes, R.S., Tsallis, C.: Crossover in diffusion equation: anomalous and normal behaviors. Phys. Rev. E 67, 031104 (2003)CrossRefGoogle Scholar
  3. 3.
    Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Klafter, J., Sokolov, I.: Anomalous diffusion spreads its wings. Phys. World 18, 29–32 (2005)CrossRefGoogle Scholar
  5. 5.
    Scher, H., Montroll, E.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455–2477 (1975)CrossRefGoogle Scholar
  6. 6.
    Levandowsky, M., White, B.S., Schuster, F.L.: Random movements of soil amebas. Acta Protozool. 36, 237–248 (1997)Google Scholar
  7. 7.
    Ott, A., Bouchaud, J.P., Langevin, D., Urbach, W.: Anomalous diffusion in “living polymers”: A genuine Levy flight? Phys. Rev. Lett. 65(17), 2201 (1990)CrossRefGoogle Scholar
  8. 8.
    Havlin, S., Movshovitz, D., Trus, B., Weiss, G.H.: Probability densities for the displacement of random walks on percolation clusters. J. Phys. A Math. Gen. 18(12), L719–L722 (1985)CrossRefGoogle Scholar
  9. 9.
    Porto, M., Bunde, A., Havlin, S., Roman, H.E.: Structural and dynamical properties of the percolation backbone in two and three dimensions. Phys. Rev. E 56(2), 1667–1675 (1997)CrossRefGoogle Scholar
  10. 10.
    Klammer, F., Kimmich, R.: Geometrical restrictions of incoherent transport of water by diffusion in protein of silica fineparticle systems and by flow in a sponge. A study of anomalous properties using an NMR field-gradient technique. Croat. Chem. Acta 65, 455–470 (1992)Google Scholar
  11. 11.
    Berkowitz, B., Scher, H.: Exploring the nature of non-fickian transport in laboratory experiments. Adv. Water. Resour. 32, 750–755 (2009)CrossRefGoogle Scholar
  12. 12.
    Berkowitz, B., Scher, H.: Anomalous transport in random fracture networks. Phys. Rev. Lett. 79, 4038–4041 (1997)CrossRefGoogle Scholar
  13. 13.
    Amblard, F., Maggs, A.C., Yurke, B., Pargellis, A.N., Leibler, S.: Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77(21), 4470–4473 (1996)CrossRefGoogle Scholar
  14. 14.
    Barkai, E., Klafter, J.: Comment on “subdiffusion and anomalous local viscoelasticity in actin networks”. Phys. Rev. Lett. 81(5), 1134 (1998)CrossRefGoogle Scholar
  15. 15.
    Kukla, V., Kornatowski, J., Demuth, D., Girnus, I., Pfeifer, H., Rees, L.V.C., Schunk, S., Unger, K.K., Kärger, J.: NMR studies of single-file diffusion in unidimensional channel zeolites. Science 272, 702–704 (1996)CrossRefGoogle Scholar
  16. 16.
    Wei, Q.H., Bechinger, C., Leiderer, P.: Single-file diffusion of colloids in one-dimensional channels. Science 287, 625–627 (2000)CrossRefGoogle Scholar
  17. 17.
    Lutz, C., Kollmann, M., Bechinger, C.: Single-file diffusion of colloids in one-dimensional channels. Phys. Rev. Lett. 93, 026001 (2004)CrossRefGoogle Scholar
  18. 18.
    Lin, B., Meron, M., Cui, B., Rice, S.A.: From random walk to single-file diffusion. Phys. Rev. Lett. 94, 216001 (2005)CrossRefGoogle Scholar
  19. 19.
    Siems, U., Kreuter, C., Erbe, A., Schwierz, N., Sengupta, S., Leiderer, P., Nielaba, P.: Non-monotonic crossover from single-file to regular diffusion in micro-channels. Sci. Rep. 2, 1015 (2012)CrossRefGoogle Scholar
  20. 20.
    Zhang, D.Z., Padrino, J.C.: Diffusion in random networks. Int. J. Multiph. Flow 92, 70–81 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Barenblatt, G.I., Zheltov, Iu P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24(5), 852–864 (1960)CrossRefGoogle Scholar
  22. 22.
    Padrino, J.C.: On the self-similar, early-time, anomalous diffusion in random networks-approach by fractional calculus. Int. Commun. Heat Mass 89, 134–138 (2017)CrossRefGoogle Scholar
  23. 23.
    Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, New York (1997)CrossRefGoogle Scholar
  24. 24.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)CrossRefGoogle Scholar
  25. 25.
    Nigmatullin, R.R.: To the theoretical explanation of the “universal response”. Phys. Stat. Sol. (b) 123(2), 739–745 (1984)CrossRefGoogle Scholar
  26. 26.
    Nigmatullin, R.R.: On the theory of relaxation for systems with “remnant” memory. Phys. Stat. Sol. (b) 124(1), 389–393 (1984)CrossRefGoogle Scholar
  27. 27.
    Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. (b) 133(1), 425–430 (1986)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mainardi, F.: The time fractional diffusion-wave equation. Radiophys. Quantum Electron. 38(1–2), 13–24 (1995)MathSciNetGoogle Scholar
  29. 29.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30(1), 134–144 (1989)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hilfer, R., Anton, L.: Fractional master equations and fractal time random walks. Phys. Rev. E 51(2), R848 (1995)CrossRefGoogle Scholar
  32. 32.
    Hilfer, R.: On fractional diffusion and its relation with continuous time random walks. In: Pekalski, A., Sznajd-Weron, K. (eds.) Anomalous Diffusion from Basics to Applications, pp. 77–82. Springer, Berlin (1999)CrossRefGoogle Scholar
  33. 33.
    Hilfer, R.: Fractional diffusion based on Riemann–Liouville fractional derivatives. J. Phys. Chem. 104, 3914–3917 (2000)CrossRefGoogle Scholar
  34. 34.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  35. 35.
    McBride, A.C.: Fractional Calculus and Integral Transforms of Generalized Functions. Volume 31 of Pitman Research Notes in Mathematics. Pitman, London (1979)zbMATHGoogle Scholar
  36. 36.
    Nishimoto, K.: An Essence of Nishimoto’s Fractional Calculus (Calculus in the 21st Century): Integrations and Differentiations of Arbitrary Order. Descartes Press Company, Descartes (1991)zbMATHGoogle Scholar
  37. 37.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  38. 38.
    Kiryakova, V.S.: Generalized Fractional Calculus and Applications. Wiley, New York (1994)zbMATHGoogle Scholar
  39. 39.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)zbMATHGoogle Scholar
  40. 40.
    Rubin, B.: Fractional Integrals and Potentials. Volume 82 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Addison Wesley Longman Limited, Harlow (1996)zbMATHGoogle Scholar
  41. 41.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Volume 198 of Mathematics in Science and Engineering. Academic Press, New York (1999)zbMATHGoogle Scholar
  42. 42.
    Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187(1), 295–305 (2007)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Luchko, Y., Mainardi, F.: Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Cent. Eur. J. Phys. 11(6), 666–675 (2013)Google Scholar
  45. 45.
    Gorenflo, R., Luchko, Y., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118(1), 175–191 (2000)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Luchko, Y., Trujillo, J.J., Velasco, M.P.: The Wright function and its numerical evaluation. Int. J. Pure Appl. Math. 64, 567–575 (2010)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Caputo, M.: Models of flux in porous media with memory. Water Resour. Res. 36(3), 693–705 (2000)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Caputo, M., Plastino, W.: Diffusion in porous layers with memory. Geophys. J. Int. 158(1), 385–396 (2004)CrossRefGoogle Scholar
  49. 49.
    Iaffaldano, G., Caputo, M., Martino, S.: Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. Discuss. 2(4), 1329–1357 (2005)CrossRefGoogle Scholar
  50. 50.
    Di Giuseppe, E., Moroni, M., Caputo, M.: Flux in porous media with memory: models and experiments. Transp. Porous Media 83(3), 479–500 (2010)CrossRefGoogle Scholar
  51. 51.
    Obembe, A.D., Hossain, M.E., Mustapha, K., Abu-Khamsin, S.A.: A modified memory-based mathematical model describing fluid flow in porous media. Comput. Math. Appl. 73(6), 1385–1402 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Raghavan, R.: Fractional derivatives: application to transient flow. J. Pet. Sci. Eng. 80(1), 7–13 (2011)CrossRefGoogle Scholar
  53. 53.
    Raghavan, R.: Fractional diffusion: performance of fractured wells. J. Pet. Sci. Eng. 92, 167–173 (2012)CrossRefGoogle Scholar
  54. 54.
    Luchko, Yu.: Asymptotics of zeros of the Wright function. J. Analy. Appl. 19(1), 1–12 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Theoretical Division, Fluid Dynamics and Solid Mechanics Group T-3, B216Los Alamos National LaboratoryLos AlamosUSA
  2. 2.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations