Advertisement

Equitable Coloring of Some Convex Polytope Graphs

  • K. Manikandan
  • T. Harikrishnan
Original Paper
  • 13 Downloads

Abstract

A proper coloring of graph G is said to be equitable if the number of element(Vertices) in any two color classes differ by atmost one. In equitable coloring the minimum number of color classes is called the equitable chromatic number. In this paper, we found some theorems on equitable coloring and derived the equitable chromatic number of convex polytope graphs with certain pendant edges added.

Keywords

Equitable coloring Equitable chromatic number Convex polytope graph 

Mathematics Subject Classification

05C15 

References

  1. 1.
    Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. 37, 194–197 (1941)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, B.L., Ko, M.T., Lih, K.W.: Equitable and m-bounded coloring of split graphs. Lect. Notes Comput. Sci. 1120, 1–5 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, B.L., Lih, K.W., Wu, P.L.: Equitable coloring and the maximum degree. Eur. J. Comb. 15, 443–447 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Das, S.K., Finocchi, I., Petreschi, R.: Conflict-free star-access in parallel memory systems. J. Parallel Distrib. Comput. 66, 1431–1441 (2006)CrossRefGoogle Scholar
  5. 5.
    Furmanczyk, H., Kubale, M.: Equitable Coloring of Graphs. Graph Colorings, pp. 35–53. American Mathematical Society, Providence (2004)Google Scholar
  6. 6.
    Hajnal, A., Szemerdi, E.: Proof of a conjecture of Erds. In: Rnyi, A., Sos, V.T. (eds.) Combinatorial Theory and Its Applications, vol. II, in: Colloq. Math. Soc. Jnos Bolyai, vol. 4, North-Holland, Amsterdam, pp. 601–623 (1970)Google Scholar
  7. 7.
    Imran, M., Bokhri, S.A., Baig, A.Q.: On the metric dimension of convex polytopes with pendent edges. Ars Comb. 125, 433–447 (2016)Google Scholar
  8. 8.
    Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience, New York (1995)zbMATHGoogle Scholar
  9. 9.
    Lin, K.W., Wu, P.L.: On equitable coloring of bipartite graphs. Discrete Math. 151, 155–160 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pemmaraju, S.V.: Equitable colorings extend Chernoff–Hoeffding bounds, approximation, randomization and combinatorial optimization: algorithms and techniques. LNCS 2129, 285–296 (2001)Google Scholar
  12. 12.
    Tucker, A.: Perfect graphs and an application to optimizing municipal services. SIAM Rev. 15, 585–590 (1973)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yap, H.P., Zhang, Y.: The equitable-coloring conjecture holds for outer planar graphs. Bull. Inst. Math. Acad. Sin. 25, 143–149 (1997)zbMATHGoogle Scholar
  14. 14.
    Yap, H.P., Zhang, Y.: Equitable colorings of planar graphs. J. Comb. Math. Comb. Comput. 27, 97–105 (1998)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Department of MathematicsGuru Nanak CollegeChennaiIndia

Personalised recommendations