# Generalization of Gegenbauer Wavelet Collocation Method to the Generalized Kuramoto–Sivashinsky Equation

• İbrahim Çelik
Original Paper

## Abstract

Gegenbauer (Ultraspherical) wavelets operational matrices play an important role for numeric solution of differential equations. In this study, operational matrices of rth integration of Gegenbauer wavelets are presented and general procedures of these matrices are correspondingly given first time. The proposed method is based on the approximation by the truncated Gegenbauer wavelet series. Algebraic equation system has been obtained by using the Chebyshev collocation points and solved. Proposed method has been applied to the Generalized Kuramoto–Sivashinsky equation using quasilinearization technique. Numerical examples showed that the method proposed in this study demonstrates the applicability and the accuracy of the Gegenbauer wavelet collocation method.

## Keywords

Gegenbauer wavelets Collocation method Kuramoto–Sivashinsky equation Quasilinearization technique

## References

1. 1.
Cattani, C.: Fractional calculus and shannon wavelets. Math. Probl. Eng. 2012, 25, Article ID 502812 (2012)Google Scholar
2. 2.
Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Mohammadi, F.: Wavelet collocation method for solving multiorder fractional differential equations. J. Appl. Math. 2012, 19, Article ID 542401 (2012)Google Scholar
3. 3.
Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Fereidouni, F.: Two-dimensional Legendre wavelets forsolving fractional poisson equation with dirichlet boundary conditions. Eng. Anal. Bound. Elem. 37, 1331–1338 (2013)
4. 4.
Cattani, C.: Shannon wavelets for the solution of integro-differential equations. Math. Probl. Eng. 2010, 22, Article ID 408418 (2010)Google Scholar
5. 5.
Cattani, C., Kudreyko, A.: Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Appl. Math. Comput. 215(12), 4164–4171 (2010)
6. 6.
Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets method for solving systems of nonlinear singular fractional volterra integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(1), 37–48 (2014)
7. 7.
Gu, J.S., Jiang, W.S.: The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27(7), 623–628 (1996)
8. 8.
Lepik, U.: Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Comput. 185, 695–704 (2007)
9. 9.
Geng, W., Chen, Y., Li, Y., Wang, D.: Wavelet method for nonlinear partial differential equations of fractional order. Comput. Inf. Sci. 4(5), 28–35 (2011)Google Scholar
10. 10.
Hariharan, G., Kannan, K., Sharma, K.R.: Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009)
11. 11.
Hariharan, G., Kannan, K.: Haar wavelet method for solving FitzHugh-Nagumo equation. Int. J. Math. Stat. Sci. 2(2), 59–63 (2010)Google Scholar
12. 12.
Hariharan, G., Kannan, K.: A comparative study of a Haar wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)
13. 13.
Hariharan, G.: An efficient wavelet analysis method to film-pore diffusion model arising in mathematical chemistry. J. Membr Biol. 247(4), 339–343 (2014)
14. 14.
Hariharan, G., Kannan, K.: Haar wavelet method for solving nonlinear parabolic equations. J. Math. Chem. 48(4), 1044–1061 (2010)
15. 15.
Kaur, H., Mittal, R.C., Mishra, V.: Haar wavelet quasilinearization approach for solving nonlinear boundary value problems. Am. J. Comput. Math. 1, 176–182 (2011)
16. 16.
Çelik, İ.: Haar wavelet method for solving generalized Burgers-Huxley equation. Arab. J. Math. Sci. 18, 25–37 (2012)
17. 17.
Çelik, İ.: Haar wavelet approximation for magnetohydrodynamic flow equations. Appl. Math. Model. 37, 3894–3902 (2013)
18. 18.
Maleknejad, K., Kajani, M.T., Mahmoudi, Y.: Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 32(9/10), 1530–1539 (2003)
19. 19.
Kajani, M.T., Vencheh, A.H.: Solving linear integro-differential equation with Legendre wavelet. Int. J. Comput. Math. 81(6), 719–726 (2004)
20. 20.
Razzaghi, M., Yousefi, S.: Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53, 185–192 (2000)
21. 21.
Razzaghi, M., Yousefi, S.: Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32(4), 495–502 (2001)
22. 22.
Babolian, E., Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188, 417–426 (2007)
23. 23.
Babolian, E., Fattahzadeh, F.: Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188(1), 1016–1022 (2007)
24. 24.
Kajania, M.T., Vencheha, A.H., Ghasemib, M.: The Chebyshev wavelets operational matrix of integration and product operation matrix. Int. J. Comput. Math. 86(7), 1118–1125 (2009)
25. 25.
Adibi, H., Assari, P.: Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind. Math. Probl. Eng. 2010, 17, Article ID 138408 (2010)Google Scholar
26. 26.
Wang, Y.X., Fan, Q.B.: The second kind Chebyshev wavelet method for solving fractional differential equations. Appl. Math. Comput. 218, 8592–8601 (2012)
27. 27.
Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M.M., Li, M.: Chebyshev wavelets method for solution of nonlinear fractional integrodifferential equations in a large interval. Adv. Math. Phys. 2013, 12, Article ID 482083 (2013)Google Scholar
28. 28.
Hooshmandasl, M.R., Heydari, M.H., Ghaini, F.M.M.: Numerical solution of the one dimensional heat equation by using chebyshev wavelets method. Appl. Comput. Math. 1(6), 1–7 (2012)Google Scholar
29. 29.
Yang, C., Hou, J.: Chebyshev wavelets method for solving Bratu’s problem. Bound. Value Probl. 2013, 142 (2013)
30. 30.
Hariharan, G.: An efficient wavelet based approximation method to water quality assessment model in a uniform channel. Ain Shams Eng. J. 5(2), 525–532 (2014)
31. 31.
Çelik, İ.: Numerical solution of differential equations by using Chebyshev wavelet collocation method. Cankaya Univ. J. Sci. Eng. 10(2), 169–184 (2013)Google Scholar
32. 32.
Çelik, İ.: Chebyshev Wavelet collocation method for solving generalized Burgers-Huxley equation. Math. Methods Appl. Sci. 39, 366–377 (2016)
33. 33.
Çelik, İ.: Free vibration of non-uniform Euler-Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method. Appl. Math. Model. 54, 268–280 (2018)
34. 34.
Pathak, A., Singh, R.K., Mandal, B.N.: Solution of Abel’s integral equation by using Gegenbauer wavelets. Investig. Math. Sci. 4(1), 43–52 (2014)
35. 35.
Abd-Elhameed, W.M., Youssri, Y.H.: New spectral solutions of multi-term fractional order initial value problems with error analysis. Comput. Model. Eng. Sci. 105(5), 375–398 (2015)Google Scholar
36. 36.
Abd-Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. In: Abstract and Applied Analysis, vol. 2014 Hindawi (2014)Google Scholar
37. 37.
Rehman, M., Saeed, U.: Gegenbauer wavelets operational matrix method for fractional differential equations. J. Korean Math. Soc. 52(5), 1069–1096 (2015)
38. 38.
Abd-Elhameed, W.M., Youssri, Y.H., Doha, E.H.: New solutions for singular Lane–Emden equations arising in astrophysics based on shifted ultraspherical operational matrices of derivatives. Comput. Methods Differ. Equ. 2(3), 171–185 (2014)
39. 39.
Youssri, Y.H., Abd-Elhameed, W.M., Doha, E.H.: Ultraspherical wavelets method for solving Lane–Emden type equations. Rom. J. Phys. 60(9), 1298–1314 (2015)Google Scholar
40. 40.
Youssri, Y.H., Abd-Elhameed, W.M., Doha, E.H.: Accurate spectral solutions of first-and second-order initial value problems by the ultraspherical wavelets-Gauss collocation method. Appl. Appl. Math. Int. J. 10(2), 835–851 (2015)
41. 41.
Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets collocation method for solving 2nth-order initial and boundary value problems. J. Egypt. Math. Soc. 24(2), 319–327 (2016)
42. 42.
Schmuck, M., Pradas, M., Pavliotis, G.A., Kalliadasis, S.: A new mode reduction strategy for the generalized Kuramoto–Sivashinsky equation. IMA J. Appl. Math. 80(2), 273–301 (2013)
43. 43.
Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2), 268–281 (2001)
44. 44.
Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)
45. 45.
Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
46. 46.
Khater, A.H., Temsah, R.S.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods. Comput. Math Appl. 56(6), 1465–1472 (2008)
47. 47.
Lakestani, M., Dehghan, M.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Appl. Math. Model. 36, 605–617 (2012)
48. 48.
Rashidinia, J., Jokar, M.: Polynomial scaling functions for numerical solution of generalized Kuramoto–Sivashinsky equation. Appl. Anal. 96(2), 293–306 (2017)