Advertisement

Modified Legendre Operational Matrix of Differentiation for Solving Strongly Nonlinear Dynamical Systems

  • A. K. Alomari
  • Muhammed Syam
  • Mohammad F. Al-Jamal
  • A. Sami Bataineh
  • N. R. Anakira
  • A. F. Jameel
Original Paper
  • 31 Downloads

Abstract

Complex vibration phenomena appear so frequently in many engineering and physical experiments, and they are well modeled using nonlinear differential equations. However, contrary to the linear models, nonlinear models are difficult to analyze analytically or numerically and particularly for long-time spans. In this paper, we propose a novel method to provide approximate analytic solutions of an important class of nonlinear differential equations that describe the underdamped, overdamped, and oscillatory motions of massspring systems subjected to external excitations. The method is based on a novel modification of the Legendre operator matrix of differentiation technique which results in solutions that are accurate not only for short-time spans but also for long-time spans as well. We provide error analysis and present several examples to demonstrate the efficiency of the proposed method.

Keywords

Mass-spring systems Nonlinear differential equations Chaotic systems Legendre operator matrix of differentiation 

Mathematics Subject Classification

34K28 65P20 32A05 

Notes

Acknowledgements

The authors would like to thank the reviewers for the valuable comments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Guckenheimer, J., Holmes, P.: Nonlinear oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefGoogle Scholar
  2. 2.
    Sheu, L., Chen, H., Chen, J., Tam, L.: Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solitons Fract. 32, 14591468 (2007)CrossRefGoogle Scholar
  3. 3.
    Smith, B.R.: The quadratically damped oscillator: a case study of a non-linear equation of motion. Am. J. Phys. 80, 816–824 (2012)CrossRefGoogle Scholar
  4. 4.
    Cvetićanin, L.: Oscillator with strong quadratic damping force, publications De L’Institut Mathematique. Nouvelle srie Tome 85(99), 119–130 (2009)zbMATHGoogle Scholar
  5. 5.
    Johannessen, K.: An analytical solution to the equation of motion for the damped nonlinear pendulum. Eur. J. Phys. 35, 035014 (2014)CrossRefGoogle Scholar
  6. 6.
    Seredynska, M., Hanyga, A.: Nonlinear differential equations with fractional damping with applications to the 1DOF and 2DOF pendulum. Acta Mech. 176, 169–183 (2005)CrossRefGoogle Scholar
  7. 7.
    Salenger, G., Vakakis, A.: F, Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators. Nonlinear Dyn. 20, 99114 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jang, M., Chen, C.: Analysis of the response of a strongly nonlinear damped system using a differential transformation technique. Appl. Math. Comput. 88, 137–151 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math Appl. 59, 1326–1336 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sezer, M., Glsu, M.: Solving high-order linear differential equations by a Legendre matrix method based on hybrid Legendre and Taylor polynomials. Numer. Methods Part. Differ. Equ. 26, 647–661 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Yalinbas, S., Sezer, M., Sorkun, H.H.: Legendre polynomial solutions of high-order linear Fredholm integro-differential equations. Appl. Math. Model. 210, 334–349 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Yuzbasi, S., Sezer, M., Kemanci, B.: Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method. Appl. Math. Model. 37, 2086–2101 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bolekf, W.: Derivation of operational matrices of differentiation for orthogonal polynomials. Automatica 29, 1607 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bataineh, A.S, Alomari, A.K, Hashim, I.: Approximate solutions of singular two-point BVPs using Legendre operational matrix of differentiation. J. Appl. Math. 2013, Article ID 547502, 6 p (2013)Google Scholar
  15. 15.
    Akrami, M., Atabakzadeh, M., Erjaee, G.: The operational matrix of fractional integration for shifted Legendre polynomials. Iran. J. Sci. Technol. 37A4, 439–444 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Aghazadeh, N., Atani, Y., Noras, P.: The Legendre wavelet method for solving singular integro-differential equations. Comput. Methods Differ. Equ. 2, 62–68 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Tohidi, E.: Legendre approximation for solving linear hpdes and comparison with Taylor and Bernoulli matrix methods. Appl. Math. 3, 410–416 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khalil, H., Khan, R.: A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation. Comput. Math Appl. 67, 1938–1953 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Abualrub, T., Sadek, I.: Legendre wavelet operational matrix of derivative for optimal control in a convectivediffusive fluid problem. J. Frankl. Inst. 351, 682–693 (2014)CrossRefGoogle Scholar
  20. 20.
    Heydari, M.H., Hooshmandasl, M.R., Maalek Ghaini, F.M., Cattani, C.: Wavelets method for the time fractional diffusion-wave equation. Phys. Lett. A 379, 71–76 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F.: Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl. Math. Comput. 234, 267–276 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Chen, Y., Sun, Y., Liu, L.: Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions. Appl. Math. Comput. 244, 847–858 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ahmadian, A., Senu, N., Larki, F., Salahshour, S., Suleiman, M., Islam, M.S.: A Legendre approximation for solving a fuzzy fractional drug transduction model into the blood stream. Adv. Intell. Syst. Comput. 287, 25–34 (2014)CrossRefGoogle Scholar
  24. 24.
    Chen, Y., Ke, X., Wei, Y.: Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput. 251, 475–488 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Cohena, M., Tanb, C.: A polynomial approximation for arbitrary functions. Appl. Math. Lett. 25, 1947–1952 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    El-Sayed, M.F., Syam, M.I.: Numerical study for the electrified instability of viscoelastic cylindrical dielectric fluid film surrounded by a conducting gas. Phys. A 377(2), 381–400 (2007)CrossRefGoogle Scholar
  27. 27.
    Syam, M.: Cubic spline interpolation predictors over implicitly defined curves. J. Comput. Appl. Math. 157(2), 283–295 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    El-Sayed, M.F., Syam, M.I.: Electrohydrodynamic instability of a dielectric compressible liquid sheet streaming into an ambient stationary compressible gas. Arch. Appl. Mech. 77(9), 613–626 (2007)CrossRefGoogle Scholar
  29. 29.
    Syam, M.I., Siyyam, H.I.: An efficient technique for finding the eigenvalues of fourth-order Sturm-Liouville problems. Chaos Solitons Fract. 39(2), 659–665 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Syam, M.I., Siyyam, H.I.: Numerical differentiation of implicitly defined curves. J. Comput. Appl. Math. 108(1–2), 131–144 (1999)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Syam, M.: The modified Broyden-variational method for solving nonlinear elliptic differential equations. Chaos Solitons Fract. 32(2), 392–404 (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Syam, M., Attili, B.S.: Numerical solution of singularly perturbed fifth order two point boundary value problem. Appl. Math. Comput. 170(2), 1085–1094 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  • A. K. Alomari
    • 1
  • Muhammed Syam
    • 2
  • Mohammad F. Al-Jamal
    • 1
  • A. Sami Bataineh
    • 3
  • N. R. Anakira
    • 4
  • A. F. Jameel
    • 5
  1. 1.Department of Mathematics, Faculty of ScienceYarmouk UniversityIrbidJordan
  2. 2.Department of Mathematical SciencesUAE UniversityAbu DhabiUnited Arab Emirates
  3. 3.Department of Mathematics, Faculty of ScienceAl-Balqa Applied UniversityAs-SaltJordan
  4. 4.Department of Mathematics, Faculty of Science and TechnologyIrbid National UniversityIrbidJordan
  5. 5.School of Quantitative SciencesUniversiti Utara Malaysia (UUM)SintokMalaysia

Personalised recommendations