Advertisement

Application of HAM to the von Kármán Swirling Flow with Heat Transfer Over a Rough Rotating Disk

  • Abhijit Das
  • Subrat Kumar Bhuyan
Original Paper

Abstract

In this study, analytical solution to the classical von Kármán swirling viscous flow with heat transfer is obtained. Using similarity transformations the governing partial differential equations are reduced to a set of coupled, nonlinear ordinary differential equations and the conventional no-slip boundary conditions are replaced by partial slip boundary conditions due to the roughness of the disk. An effective analytical method for fully coupled and highly nonlinear differential equations, called Homotopy Analysis Method (HAM) is adopted and the solutions are obtained in the form of an convergent Taylor series. The effect of azimuthally anisotropic roughness, radially anisotropic roughness and isotropic roughness on the velocity and temperature profiles are studied in detail. Result shows that HAM is very efficient and easy to implement.

Keywords

Partial slip HAM Kármán flow 

Notes

Acknowledgements

The authors would like to thank the chief editor and the anonymous reviewers for their detailed review and suggestions on our work.

References

  1. 1.
    Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360, 109–113 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adomian, G.: Nonlinear stochastic differential equations. J. Math. Anal. Appl. 55, 441–452 (1976)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ahmad, I., Raja, M.A.Z., Bilal, M., Ashraf, F.: Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model. SpringerPlus 5, 1866 (2016)CrossRefGoogle Scholar
  4. 4.
    Ahmad, I., Raja, M.A.Z., Bilal, M., Ashraf, F.: Neural network methods to solve the Lane–Emden type equations arising in thermodynamic studies of the spherical gas cloud model. Neural Comput. Appl. 28, 929–944 (2017)CrossRefGoogle Scholar
  5. 5.
    Akram, G., Sadaf, M.: Application of homotopy analysis method to the solution of ninth order boundary value problems in AFTI-F16 fighters. J. Assoc. Arab Univ. Basic Appl. Sci. 24, 149–155 (2017)Google Scholar
  6. 6.
    Attia, H.A.: Unsteady MHD flow near a rotating porous disk with uniform suction or injection. Fluid Dyn. Res. 23, 283 (1998)CrossRefGoogle Scholar
  7. 7.
    Attia, H.A., Aboul-Hassan, A.L.: Effect of Hall current on the unsteady MHD flow due to a rotating disk with uniform suction or injection. Appl. Math. Model. 25, 1089–1098 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Attia, H.A.: Steady flow over a rotating disk in porous medium with heat transfer. Nonlinear Anal. Model. Control 14, 21–26 (2009)MATHGoogle Scholar
  9. 9.
    Batchelor, G.K.: Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Math. 4, 29–41 (1951)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cochran, W.G.: The flow due to a rotating disc. Math. Proc. Camb. Philos. Soc. 30, 365–375 (1934)CrossRefMATHGoogle Scholar
  11. 11.
    Fettis, H.E.: On the integration of a class of differential equations occurring in boundary layer and other hydrodynamic problems. In: Proceedings of the 4th midwest conference fluid mechanics 6002 (1995)Google Scholar
  12. 12.
    Hassan, H., Mehdi Rashidi, M.: An analytic solution of micropolar flow in a porous channel with mass injection using homotopy analysis method. Int. J. Numer. Methods Heat Fluid Flow 24, 419–437 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hasan, K.M., Raja M.A.Z.: Design of reduced search space strategy based on integration of NelderMead method and pattern search algorithm with application to economic load dispatch problem. Neural Comput. Appl. 1–13 (2017).  https://doi.org/10.1007/s00521-017-2951-6
  14. 14.
    He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135, 73–79 (2003)MathSciNetMATHGoogle Scholar
  15. 15.
    Janke, W., Kleinert, H.: Convergent strong-coupling expansions from divergent weak-coupling perturbation theory. Phys. Rev. Lett. 75, 2787 (1995)CrossRefGoogle Scholar
  16. 16.
    Kármán, T.V.: Über laminare und turbulente Reibung. ZAMM J. Appl. Math. Mech./Zeitschrift für, Angewandte Mathematik und Mechanik 1, 233–252 (1921)Google Scholar
  17. 17.
    Karmishin, A.V., Zhukov, A.I, Kolosov, V.G.: Methods of dynamics calculation and testing for thin-walled structures. Mashinostroyenie, Moscow (1990)Google Scholar
  18. 18.
    Khan, J.A., Raja, M.A.Z., Rashidi, M.M., Syam, M.I., Wazwaz, A.M.: Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory. Connect. Sci. 27, 377–396 (2015)CrossRefGoogle Scholar
  19. 19.
    Lara-Rodriguez, G., Cai, C.: Near continuum flows over a rotating disk. Braz. J. Phys. 45, 431–438 (2015)CrossRefGoogle Scholar
  20. 20.
    Liao S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University (1992)Google Scholar
  21. 21.
    Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55, 531–534 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    McLeod, J.B.: Von Karman’s swirling flow problem. Arch. Ration. Mech. Anal. 33, 91–102 (1969)CrossRefMATHGoogle Scholar
  23. 23.
    Miklavĉiĉ, M., Wang, C.Y.: The flow due to a rough rotating disk. Zeitschrift üur angewandte Mathematik und Physik ZAMP 55, 235–246 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mustafa, M.: MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int. J. Heat Mass Transf. 108, 1910–1916 (2017)CrossRefGoogle Scholar
  25. 25.
    Raja, M.A.Z., Khan, M.A.R., Mahmood, T., Farooq, U., Chaudhary, N.I.: Design of bio-inspired computing technique for nanofluidics based on nonlinear Jeffery–Hamel flow equations. Can. J. Phys. 94, 474–489 (2016)CrossRefGoogle Scholar
  26. 26.
    Raja, M.A.Z., Shah, F.H., Tariq, M., Ahmad, I.: Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troeschs problem arising in plasma physics. Neural Comput. Appl. 29(6), 83–109 (2018)CrossRefGoogle Scholar
  27. 27.
    Raja, M.A.Z., Shah, F.H., Alaidarous, E.S., Syam, M.I.: Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl. Soft Comput. 52, 605–629 (2017)CrossRefGoogle Scholar
  28. 28.
    Raja, M.A.Z., Shah, A.A., Mehmood, A., Chaudhary, N.I., Aslam, M.S.: Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system. Neural Comput. Appl. 29(12), 1455–1474 (2018)CrossRefGoogle Scholar
  29. 29.
    Rashidi, M.M., Ashraf, M., Rostami, B., Rastegari, T.M., Bashir, S.: Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method. Thermal Sci. 20, 21–34 (2016)CrossRefGoogle Scholar
  30. 30.
    Rashidi, M.M., Pour, S.M., Hayat, T., Obaidat, S.: Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput. Fluids 54, 1–9 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Rogers, M.H., Lance, G.N.: The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disk. J. Fluid Mech. 7, 617–631 (1960)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sahoo, B.: Effects of partial slip, viscous dissipation and Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid. Commun. Nonlinear Sci. Numer. Simul. 14, 2982–2998 (2009)CrossRefGoogle Scholar
  33. 33.
    Sahoo, B., Poncet, S., Labropulu, F.: Effects of slip on the von Kármán swirling flow and heat transfer in a porous medium. Trans. Can. Soc. Mech. Eng. 39, 357 (2015)CrossRefGoogle Scholar
  34. 34.
    Seshadri, R., Munjam, S.R.: The study of heat and mass transfer in a viscoelastic fluid due to a continuous stretching surface using homotopy analysis method. J. Appl. Anal. Comput. 4, 389–403 (2014)MathSciNetMATHGoogle Scholar
  35. 35.
    Song, L., Zhang, H.: Application of homotopy analysis method to fractional KdV–Burgers–Kuramoto equation. Phys. Lett. A 367, 88–94 (2007)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Yang, C., Liao, S.: On the explicit, purely analytic solution of von Kármán swirling viscous flow. Commun. Nonlinear Sci. Numer. Simul. 11, 83–93 (2006)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Yuan, L.G., Alam, Z.: An optimal homotopy analysis method based on particle swarm optimization: application to fractional-order differential equation. J. Appl. Anal. Comput. 6, 103–118 (2015)MathSciNetGoogle Scholar
  38. 38.
    Zandbergen, P.J., Dijkstra, D.: Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465–491 (1987)CrossRefMATHGoogle Scholar
  39. 39.
    Zameer, A., Arshad, J., Khan, A., Raja, M.A.Z.: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manag. 134, 361–372 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2018

Authors and Affiliations

  1. 1.Department of MathematicsNIT RourkelaRourkelaIndia
  2. 2.Department of Metallurgical and Materials EngineeringNIT RourkelaRourkelaIndia

Personalised recommendations