Modeling the Dynamics of Infectious Disease Under the Influence of Environmental Pollution

  • Nitu KumariEmail author
  • Sandeep Sharma
Original Paper


Environmental pollution is one of the leading causes of mortality across the globe. There are evidences in literature which reflects the fact that regular exposure to environmental pollution leads to reduced immunity in human population. Therefore, we introduce environmental pollution as one of the concepts in understanding the dynamics of infectious disease. We propose a new SIS type epidemic model to study the impact of environmental pollution on the spread of infectious diseases. We divide the susceptible individuals into two compartments out of which one contains the pollution affected individuals. The present study demonstrates that we can not ignore environmental pollution during the study of a disease model. Till date, there are no studies which show the significance and impact of environmental pollution on the spread of infectious diseases. The expression of basic reproduction number is obtained for the proposed model. A detailed dynamical analysis of the model has been performed using the theory of ordinary differential equations, dynamical system and basic reproduction number. Numerical simulations along with sensitivity analysis are performed to support our analytical findings.


Infectious disease Environmental pollution Basic reproduction number Backward bifurcation Stability 

Mathematics Subject Classification

92D30 34D20 34D23 



The current research of N. Kumari is supported by IIT, Mandi under the Project IITM/SG/NK/008.


  1. 1.
    Alexander, M.E., Moghadas, S.M.: Periodicity in an epidemic model with a generalized non-linear incidence. Math. Biosci. 189(1), 75–96 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexander, M.E., Moghadas, S.M.: Bifurcation analysis of an SIRS epidemic model with generalized incidence. SIAM J. Appl. Math. 65(5), 1794–1816 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Allen, L.J.S., Brauer, F., Van den Driessche, P., Wu, J.: Mathematical Epidemiology. Springer, Berlin (2008)Google Scholar
  4. 4.
    Arino, J., Connell McCluskey, C., van den Driessche, P.: Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 64(1), 260–276 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brauer, F.: Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298(2), 418–431 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brisbois, B.W., Ali, S.H.: Climate change, vector-borne disease and interdisciplinary research: social science perspectives on an environment and health controversy. EcoHealth 7(4), 425–438 (2010)CrossRefGoogle Scholar
  7. 7.
    Cai, L.-M., Li, X.-Z.: Analysis of a SEIV epidemic model with a nonlinear incidence rate. Appl. Math. Model. 33(7), 2919–2926 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cai, L.-M., Li, X.-Z.: Global analysis of a vector-host epidemic model with nonlinear incidences. Appl. Math. Comput. 217(7), 3531–3541 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Capasso, V., Capasso, V.: Mathematical Structures of Epidemic Systems, vol. 88. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Castillo-Chávez, C., Blower, S., Driessche, P., Kirschner, D., Yakubu, A.-A.: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, vol. 126. Springer, Berlin (2002)zbMATHGoogle Scholar
  11. 11.
    Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chitnis, N., Cushing, J.M., Hyman, J.M.: Bifurcation analysis of a mathematical model for malaria transmission. SIAM J. Appl. Math. 67(1), 24–45 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–1296 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Codeço, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1(1), 1 (2001)CrossRefGoogle Scholar
  15. 15.
    Cui, J., Sun, Y., Zhu, H.: The impact of media on the control of infectious diseases. J. Dyn. Differ. Equ. 20(1), 31–53 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dobson, A.: Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90(4), 920–927 (2009)CrossRefGoogle Scholar
  17. 17.
    Dubey, B.: A model for the effect of pollutant on human population dependent on a resource with environmental and health policy. J. Biol. Syst. 18(03), 571–592 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal. Real World Appl. 12(1), 320–332 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150(2), 131–151 (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Freedman, H.I., So, J.W.-H.: Global stability and persistence of simple food chains. Math. Biosci. 76(1), 69–86 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ghosh, M., Chandra, P., Sinha, P., Shukla, J.B.: Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population. Nonlinear Anal. Real World Appl. 7(3), 341–363 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Grandjean, P., Bellinger, D., Bergman, Å., Cordier, S., Davey-Smith, G., Eskenazi, B., Gee, D., Gray, K., Hanson, M., Van Den Hazel, P., et al.: The faroes statement: human health effects of developmental exposure to chemicals in our environment. Basic Clin. Pharmacol. Toxicol. 102(2), 73–75 (2008)Google Scholar
  23. 23.
    Greenhalgh, D., Rana, S., Samanta, S., Sardar, T., Bhattacharya, S., Chattopadhyay, J.: Awareness programs control infectious disease-multiple delay induced mathematical model. Appl. Math. Comput. 251, 539–563 (2015)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hallam, T.G., Clark, C.E., Lassiter, R.R.: Effects of toxicants on populations: a qualitative approach I. Equilibrium environmental exposure. Ecol. Model. 18(3), 291–304 (1983)CrossRefzbMATHGoogle Scholar
  25. 25.
    Hallam, T.G., De Luna, J.T.: Effects of toxicants on populations: a qualitative: approach III. Environmental and food chain pathways. J. Theor. Biol. 109(3), 411–429 (1984)CrossRefGoogle Scholar
  26. 26.
    Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, vol. 5. Wiley, Hoboken (2000)zbMATHGoogle Scholar
  27. 27.
    Hertz-Picciotto, I., Park, H.-Y., Dostal, M., Kocan, A., Trnovec, T., Sram, R.: Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin. Pharmacol. Toxicol. 102(2), 146–154 (2008)CrossRefGoogle Scholar
  28. 28.
    Hoshen, M.B., Morse, A.P.: A weather-driven model of malaria transmission. Malaria J. 3(1), 1 (2004)CrossRefGoogle Scholar
  29. 29.
    Huaping, L., Zhien, M.: The threshold of survival for system of two species in a polluted environment. J. Math. Biol. 30(1), 49–61 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 115, pp. 700–721. The Royal Society (1927)Google Scholar
  31. 31.
    Khan, R.A.: Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the exxon valdez oil spill. Bull. Environ. Contam. Toxicol. 44(5), 759–763 (1990)CrossRefGoogle Scholar
  32. 32.
    Kribs-Zaleta, C.M., Velasco-Hernandez, J.X.: A simple vaccination model with multiple endemic states. Math. Biosci. 164(2), 183–201 (2000)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kumari, N., Sharma, S.: Does water disinfectant play a supportive role in the spread of infectious disease? A mathematical study. Nat. Resour. Model. 29(2), 259–288 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lafferty, K.D.: The ecology of climate change and infectious diseases. Ecology 90(4), 888–900 (2009)CrossRefGoogle Scholar
  35. 35.
    Lafferty, K.D., Holt, R.D.: How should environmental stress affect the population dynamics of disease? Ecol. Lett. 6(7), 654–664 (2003)CrossRefGoogle Scholar
  36. 36.
    Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Li, Y., Muldowney, J.S.: On Bendixson’s criterion. J. Differ. Equ. 106(1), 27–39 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    McCluskey, C.C.: Complete global stability for an sir epidemic model with delay—distributed or discrete. Nonlinear Anal. Real World Appl. 11(1), 55–59 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    McCluskey, C.C., van den Driessche, P.: Global analysis of two tuberculosis models. J. Dyn. Differ. Equ. 16(1), 139–166 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Misra, A.K., Sharma, A., Shukla, J.B.: Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases. Math. Comput. Model. 53(5), 1221–1228 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Nakata, Y., Kuniya, T.: Global dynamics of a class of seirs epidemic models in a periodic environment. J. Math. Anal. Appl. 363(1), 230–237 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Patz, J.A., Githeko, A.K., McCarty, J.P., Hussein, S., Confalonieri, U., De Wet, N.: Climate change and infectious diseases. Clim. Change Hum. Health Risks Responses 6, 103–137 (2003)Google Scholar
  43. 43.
    Raqib, R., Ahmed, S., Sultana, R., Wagatsuma, Y., Dinesh Mondal, A.M., Hoque, W., Nermell, B., Yunus, M., Roy, S., Persson, L.A., et al.: Effects of in utero arsenic exposure on child immunity and morbidity in rural bangladesh. Toxicol. Lett. 185(3), 197–202 (2009)CrossRefGoogle Scholar
  44. 44.
    Rebelo, C., Margheri, A., Bacaër, N.: Persistence in seasonally forced epidemiological models. J. Math. Biol. 64(6), 933–949 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Rodó, X., Pascual, M., Doblas-Reyes, F.J., Gershunov, A., Stone, D.A., Giorgi, F., Hudson, P.J., Kinter, J., Rodríguez-Arias, M.À., Stenseth, N.C., et al.: Climate change and infectious diseases: can we meet the needs for better prediction? Clim. Change 118(3–4), 625–640 (2013)CrossRefGoogle Scholar
  46. 46.
    Ruan, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188(1), 135–163 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., Von Gunten, U., Wehrli, B.: Global water pollution and human health. Annu. Rev. Environ. Resour. 35, 109–136 (2010)CrossRefGoogle Scholar
  48. 48.
    Smith, R.A.: Some applications of Hausdorff dimension inequalities for ordinary differential equations. Proc. R. Soc. Edinb. Sect. A Math. 104(3–4), 235–259 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tchuenche, J.M., Dube, N., Bhunu, C.P., Smith, R.J., Bauch, C.T.: The impact of media coverage on the transmission dynamics of human influenza. BMC Public Health 11(1), 1 (2011)CrossRefGoogle Scholar
  50. 50.
    Tien, J.H., Earn, D.J.D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72(6), 1506–1533 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Van den Driessche, P.: Time delay in epidemic models. IMA Vol. Math. Its Appl. 125, 119–128 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Wang, W.: Global behavior of an SEIRS epidemic model with time delays. Appl. Math. Lett. 15(4), 423–428 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201(1), 58–71 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Yang, H.M., Macoris, M.L.G., Galvani, K.C., Andrighetti, M.T.M., Wanderley, D.M.V.: Assessing the effects of temperature on dengue transmission. Epidemiol. Infect. 137(08), 1179–1187 (2009)CrossRefGoogle Scholar
  56. 56.
    Zhang, T., Liu, J., Teng, Z.: Dynamic behavior for a nonautonomous SIRS epidemic model with distributed delays. Appl. Math. Comput. 214(2), 624–631 (2009)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Zhang, X., Liu, X.: Backward bifurcation and global dynamics of an sis epidemic model with general incidence rate and treatment. Nonlinear Anal. Real World Appl. 10(2), 565–575 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zhou, X., Cui, J.: Modeling and stability analysis for a cholera model with vaccination. Math. Methods Appl. Sci. 34(14), 1711–1724 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Basic SciencesIndian Institute of Technology, MandiMandiIndia

Personalised recommendations