Operational Versus Umbral Methods and the Borel Transform
- 165 Downloads
- 5 Citations
Abstract
Integro-differential methods, currently exploited in calculus, provide an inexhaustible source of tools to be applied to a wide class of problems, involving the theory of special functions and other subjects. The use of integral transforms of the Borel type and the associated formalism is shown to be a very effective mean, constituting a solid bridge between umbral and operational methods. We merge these different points of view to obtain new and efficient analytical techniques for the derivation of integrals of special functions and the summation of associated generating functions as well.
Keywords
Integral transforms Borel transforms Operational calculus Umbral calculusNotes
Acknowledgements
The authors express their sincere appreciation to Dr. D. Babusci for interesting and enlightening discussions on the topics treated in this paper. It is also a pleasure to recognize the interest and the encouragement of Prof. V. Strehl. K. G., A. H. and K. A. P. were supported by the PAN-CNRS program for the French-Polish collaboration. Moreover, K. G. thanks for the support from MNiSW, Warsaw (Poland), under “Iuventus Plus 2015–2016”, program no IP2014 013073.
References
- 1.Amdeberhan, T., Moll, V.H.: A formula for a quartic integral: a survey of old proofs and some new ones. Ramanujan J. 18, 91 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Amdeberhan, T., Espinosa, O., Gonzalez, I., Harrison, M., Moll, V.H., Straub, A.: Ramanujan’s master theorem. Ramanujan J. 29, 103 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Andrews, L.C.: Special Functions For Engineers and Applied Mathematicians. Macmillan Publishing Company, New York (1985)Google Scholar
- 4.Appell, P., Kampé de Fériet, J.: Fonctions Hypergéometriques et Hyperspheriques. Polynômes d’Hermite, Gauthiers-Villars, Paris (1926)Google Scholar
- 5.Babusci, D., Dattoli, G., Górska, K., Penson, K.A.: Symbolic methods for the evaluation of sum rules of Bessel functions. J. Math. Phys. 54, 073501 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Babusci, D., Dattoli, G., Górska, K., Penson, K.A.: The spherical Bessel and Struve functions and operational methods. Appl. Math. Comput. 238, 1 (2014)zbMATHMathSciNetGoogle Scholar
- 7.Babusci, D., Dattoli, G., Górska, K., Penson, K. A.: Lacunary generating functions for Laguerre Polynomials, Séminaire Lotharingien de Combinatoire (2017, in press): preprint arXiv:1302.4894 [math-ph]
- 8.Bender, C.M., Orszag, S.V.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Company, New York (1978)zbMATHGoogle Scholar
- 9.Brychkov, Yu.A.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas, CRC Press, Boca Raton (2008)Google Scholar
- 10.Dattoli, G.: Derivation of the Hile-Hardy type formulae and operational methods. Rend. Mat. Acc. Lincei s. 9(14), 85 (2003)zbMATHGoogle Scholar
- 11.Dattoli, G., Germano, B., Martinelli, M.R., Ricci, P.E.: The negative derivative operator. Integr. Transf. Spec. F. 19, 259 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Dattoli, G., Ottaviani, P.L., Torre, A., Vázquez, L.: Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. La Rivista del Nuovo Cimento 20(4), 1 (1997)CrossRefGoogle Scholar
- 13.Dattoli, G., Ricci, P. E., Marinelli, L.: Generalized truncated exponential polynomials and applications, Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 34, 9–18 (2002)Google Scholar
- 14.Dzherbashyan, M.M.: Integral Transforms and Representations of Functions in Complex Domain (in Russian). Nauka, Moscow (1966)Google Scholar
- 15.Ehrenpreis, L.: The Borel Transform. In: Aoki, T., Majima, H., Takei, Y., Tose, N. (eds.) Algebraic Analysis of Differential Equations. Springer, Berlin (2008)Google Scholar
- 16.Gessel, I.M., Jayawant, P.: A triple lacunary generating function for Hermite polynomials. Electron. J. Comb. 12, R30 (2005)zbMATHMathSciNetGoogle Scholar
- 17.Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, Amsterdam (2007)zbMATHGoogle Scholar
- 18.Mishra, H. K., Nagar, A. K.: He-Laplace Method for Linear and Nonlinear Partial Differential Equations J. Appl. Math. 2012, Article ID 180315, 16 (2012)Google Scholar
- 19.Jumarie, G.: Laplace’s transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative. Appl. Math. Lett. 22, 1659 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Krantz, S. G.: The Hankel Contour and Hankel Functions, in: Handbook of Complex Variables, Birkhäuser, Boston, Suppl. pages 157–160 (1999)Google Scholar
- 21.Mikusiński, J.: Sur les fondements du calcul operatoire, Studia Mathematica 11 (1949) 41. Operational Calculus, Pergamon Press, London (1959)Google Scholar
- 22.Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25, 241 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
- 23.Okamoto, S.: A simplified derivation of Mikusiński’s operational calculus, Proceedings of the Japan Academy, Ser. A, Math. Sci. 55 (1), 1 (1979)Google Scholar
- 24.Oldham, K. B., Spanier, J.: The Fractional Calculus, in: Mathematics in Science and Engineering 111, Academic Press, San Diego, Suppl. pages 46–159 (1999)Google Scholar
- 25.Podlubny, I.: Fractional Differential Equations, in: Mathematics in Science and Engineering 198, Academic Press, San Diego (1974)Google Scholar
- 26.Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and Series. Special Functions, vol. 2, Gordon and Breach, Amsterdam (1998)Google Scholar
- 27.Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and Series. More Special Functions, vol. 3, Gordon and Breach, Amsterdam (1998)Google Scholar
- 28.Roman, S.: The theory of the umbral calculus. J. Math. Anal. Appl. 87, 58 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
- 29.Rota, G.-C., Kahaner, D., Odlyzko, A.: On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, 684 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
- 30.Shawyer, B., Watson, B.: Borel’s Methods of Summability. Theory and Applications. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
- 31.Sneddon, I.N.: The Use of Integral Transforms. Tata McGraw-Hill Publishing Company Ltd., New Delhi (1974)zbMATHGoogle Scholar
- 32.Strehl, V.: Combinatoire Retrospective et Creative, Séminaire Lotharingien de Combinatoire, Bertinoro, Italy, 71 (2013). http://www.emis.de/jacFinals/SLC/wpapers/sF1vertrag/strehl.pdf
- 33.Tricomi, F.G.: Funzioni ipergeometriche confluenti. Cremonese, Rome (1954)Google Scholar
- 34.Vallée, O., Soares, M.: Airy Functions and Application to Physics. World Scientific, London (2004)CrossRefzbMATHGoogle Scholar
- 35.Weinberg, S.: The Quantum Theory of Fields II. Cambridge University Press, New York (2005)zbMATHGoogle Scholar
- 36.Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, New York (1963)zbMATHGoogle Scholar
- 37.Wolf, K.B.: Integral Transforms in Science and Engineering. Plenum Press, New York (1979)CrossRefzbMATHGoogle Scholar
- 38.Zakharov, A.A.: Borel summation method. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Springer, Berlin (2001)Google Scholar
- 39.Zhao, Ch.-G., Yang, A.-M., Jafari, H., Haghbin, A.: The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative. Abstr. Appl. Anal. 2014, Article ID 386459, 5 (2014)Google Scholar
- 40.Zinn-Justin, J.: Summation of divergent series: order-dependent mapping. Appl. Numer. Math. 60(12), 1454 (2010)CrossRefzbMATHMathSciNetGoogle Scholar