Advertisement

Operational Versus Umbral Methods and the Borel Transform

  • G. Dattoli
  • E. di Palma
  • E. Sabia
  • K. GórskaEmail author
  • A. Horzela
  • K. A. Penson
Original Paper

Abstract

Integro-differential methods, currently exploited in calculus, provide an inexhaustible source of tools to be applied to a wide class of problems, involving the theory of special functions and other subjects. The use of integral transforms of the Borel type and the associated formalism is shown to be a very effective mean, constituting a solid bridge between umbral and operational methods. We merge these different points of view to obtain new and efficient analytical techniques for the derivation of integrals of special functions and the summation of associated generating functions as well.

Keywords

Integral transforms Borel transforms Operational calculus Umbral calculus 

Notes

Acknowledgements

The authors express their sincere appreciation to Dr. D. Babusci for interesting and enlightening discussions on the topics treated in this paper. It is also a pleasure to recognize the interest and the encouragement of Prof. V. Strehl. K. G., A. H. and K. A. P. were supported by the PAN-CNRS program for the French-Polish collaboration. Moreover, K. G. thanks for the support from MNiSW, Warsaw (Poland), under “Iuventus Plus 2015–2016”, program no IP2014 013073.

References

  1. 1.
    Amdeberhan, T., Moll, V.H.: A formula for a quartic integral: a survey of old proofs and some new ones. Ramanujan J. 18, 91 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Amdeberhan, T., Espinosa, O., Gonzalez, I., Harrison, M., Moll, V.H., Straub, A.: Ramanujan’s master theorem. Ramanujan J. 29, 103 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Andrews, L.C.: Special Functions For Engineers and Applied Mathematicians. Macmillan Publishing Company, New York (1985)Google Scholar
  4. 4.
    Appell, P., Kampé de Fériet, J.: Fonctions Hypergéometriques et Hyperspheriques. Polynômes d’Hermite, Gauthiers-Villars, Paris (1926)Google Scholar
  5. 5.
    Babusci, D., Dattoli, G., Górska, K., Penson, K.A.: Symbolic methods for the evaluation of sum rules of Bessel functions. J. Math. Phys. 54, 073501 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Babusci, D., Dattoli, G., Górska, K., Penson, K.A.: The spherical Bessel and Struve functions and operational methods. Appl. Math. Comput. 238, 1 (2014)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Babusci, D., Dattoli, G., Górska, K., Penson, K. A.: Lacunary generating functions for Laguerre Polynomials, Séminaire Lotharingien de Combinatoire (2017, in press): preprint arXiv:1302.4894 [math-ph]
  8. 8.
    Bender, C.M., Orszag, S.V.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Company, New York (1978)zbMATHGoogle Scholar
  9. 9.
    Brychkov, Yu.A.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas, CRC Press, Boca Raton (2008)Google Scholar
  10. 10.
    Dattoli, G.: Derivation of the Hile-Hardy type formulae and operational methods. Rend. Mat. Acc. Lincei s. 9(14), 85 (2003)zbMATHGoogle Scholar
  11. 11.
    Dattoli, G., Germano, B., Martinelli, M.R., Ricci, P.E.: The negative derivative operator. Integr. Transf. Spec. F. 19, 259 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dattoli, G., Ottaviani, P.L., Torre, A., Vázquez, L.: Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. La Rivista del Nuovo Cimento 20(4), 1 (1997)CrossRefGoogle Scholar
  13. 13.
    Dattoli, G., Ricci, P. E., Marinelli, L.: Generalized truncated exponential polynomials and applications, Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 34, 9–18 (2002)Google Scholar
  14. 14.
    Dzherbashyan, M.M.: Integral Transforms and Representations of Functions in Complex Domain (in Russian). Nauka, Moscow (1966)Google Scholar
  15. 15.
    Ehrenpreis, L.: The Borel Transform. In: Aoki, T., Majima, H., Takei, Y., Tose, N. (eds.) Algebraic Analysis of Differential Equations. Springer, Berlin (2008)Google Scholar
  16. 16.
    Gessel, I.M., Jayawant, P.: A triple lacunary generating function for Hermite polynomials. Electron. J. Comb. 12, R30 (2005)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, Amsterdam (2007)zbMATHGoogle Scholar
  18. 18.
    Mishra, H. K., Nagar, A. K.: He-Laplace Method for Linear and Nonlinear Partial Differential Equations J. Appl. Math. 2012, Article ID 180315, 16 (2012)Google Scholar
  19. 19.
    Jumarie, G.: Laplace’s transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative. Appl. Math. Lett. 22, 1659 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Krantz, S. G.: The Hankel Contour and Hankel Functions, in: Handbook of Complex Variables, Birkhäuser, Boston, Suppl. pages 157–160 (1999)Google Scholar
  21. 21.
    Mikusiński, J.: Sur les fondements du calcul operatoire, Studia Mathematica 11 (1949) 41. Operational Calculus, Pergamon Press, London (1959)Google Scholar
  22. 22.
    Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25, 241 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Okamoto, S.: A simplified derivation of Mikusiński’s operational calculus, Proceedings of the Japan Academy, Ser. A, Math. Sci. 55 (1), 1 (1979)Google Scholar
  24. 24.
    Oldham, K. B., Spanier, J.: The Fractional Calculus, in: Mathematics in Science and Engineering 111, Academic Press, San Diego, Suppl. pages 46–159 (1999)Google Scholar
  25. 25.
    Podlubny, I.: Fractional Differential Equations, in: Mathematics in Science and Engineering 198, Academic Press, San Diego (1974)Google Scholar
  26. 26.
    Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and Series. Special Functions, vol. 2, Gordon and Breach, Amsterdam (1998)Google Scholar
  27. 27.
    Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and Series. More Special Functions, vol. 3, Gordon and Breach, Amsterdam (1998)Google Scholar
  28. 28.
    Roman, S.: The theory of the umbral calculus. J. Math. Anal. Appl. 87, 58 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Rota, G.-C., Kahaner, D., Odlyzko, A.: On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, 684 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Shawyer, B., Watson, B.: Borel’s Methods of Summability. Theory and Applications. Clarendon Press, Oxford (1994)zbMATHGoogle Scholar
  31. 31.
    Sneddon, I.N.: The Use of Integral Transforms. Tata McGraw-Hill Publishing Company Ltd., New Delhi (1974)zbMATHGoogle Scholar
  32. 32.
    Strehl, V.: Combinatoire Retrospective et Creative, Séminaire Lotharingien de Combinatoire, Bertinoro, Italy, 71 (2013). http://www.emis.de/jacFinals/SLC/wpapers/sF1vertrag/strehl.pdf
  33. 33.
    Tricomi, F.G.: Funzioni ipergeometriche confluenti. Cremonese, Rome (1954)Google Scholar
  34. 34.
    Vallée, O., Soares, M.: Airy Functions and Application to Physics. World Scientific, London (2004)CrossRefzbMATHGoogle Scholar
  35. 35.
    Weinberg, S.: The Quantum Theory of Fields II. Cambridge University Press, New York (2005)zbMATHGoogle Scholar
  36. 36.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, New York (1963)zbMATHGoogle Scholar
  37. 37.
    Wolf, K.B.: Integral Transforms in Science and Engineering. Plenum Press, New York (1979)CrossRefzbMATHGoogle Scholar
  38. 38.
    Zakharov, A.A.: Borel summation method. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Springer, Berlin (2001)Google Scholar
  39. 39.
    Zhao, Ch.-G., Yang, A.-M., Jafari, H., Haghbin, A.: The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative. Abstr. Appl. Anal. 2014, Article ID 386459, 5 (2014)Google Scholar
  40. 40.
    Zinn-Justin, J.: Summation of divergent series: order-dependent mapping. Appl. Numer. Math. 60(12), 1454 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2017

Authors and Affiliations

  • G. Dattoli
    • 1
  • E. di Palma
    • 1
  • E. Sabia
    • 1
  • K. Górska
    • 2
    Email author
  • A. Horzela
    • 2
  • K. A. Penson
    • 3
  1. 1.ENEA—Centro Ricerche FrascatiFrascati (Roma)Italy
  2. 2.Division of Theoretical Physics, H. Niewodniczański Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
  3. 3.Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600Sorbonne Universités, Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations