Advertisement

Novel Concepts of Strongly Edge Irregular m-Polar Fuzzy Graphs

  • Ganesh Ghorai
  • Madhumangal Pal
Original Paper

Abstract

A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we present a frame work to handle m-polar fuzzy information by combining the theory of m-polar fuzzy sets with graphs. We introduce the notion of strongly edge irregular and strongly edge totally irregular m-polar fuzzy graphs. Some properties of them are also studied to characterize strongly edge irregular and strongly edge totally irregular m-polar fuzzy graphs.

Keywords

m-Polar fuzzy graphs Strongly edge irregular Strongly edge totally regular Highly irregular m-polar fuzzy graphs 

Mathematics Subject Classification

05C72 03E72 

Notes

Acknowledgements

Financial support for the first author offered under the Innovative Research Scheme, UGC, New Delhi, India (Ref. No.VU/Innovative/Sc/15/2015) is thankfully acknowledged.

References

  1. 1.
    Akram, M.: Bipolar fuzzy grpahs. Inf. Sci. 181, 5548–5564 (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Al-Hawary, T.: Complete fuzzy graphs. Int. J Math. Comb. 4, 26–34 (2011)zbMATHGoogle Scholar
  3. 3.
    Bhutani, K.R.: On automorphism of fuzzy graphs. Pattern Recognit. Lett. 9, 159–162 (1989)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bhutani, K.R., Moderson, J., Rosenfeld, A.: On degrees of end nodes and cut nodes in fuzzy graphs. Iran. J. Fuzzy Syst. 1(1), 57–64 (2004)MathSciNetGoogle Scholar
  5. 5.
    Borzooei, R.A., Rashmanlou, H.: Domination in vague graphs and its applications. J. Intell. Fuzzy Syst. 29, 1933–1940 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Borzooei, R.A., Rashmanlou, H.: New concepts of vague graphs. Int. J. Mach. Learn. Cybernet. (2015). doi: 10.1007/s13042-015-0475-x zbMATHGoogle Scholar
  7. 7.
    Borzooei, R.A., Rashmanlou, H.: More results on vague graphs. UPB Sci. Bull. Ser. A 78(1), 109–122 (2016)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Borzooei, R.A., Rashmanlou, H.: Semi global domination sets in vague graphs with application. J. Intell. Fuzzy Syst. (2016). doi: 10.3233/IFS-162110 zbMATHGoogle Scholar
  9. 9.
    Chen, J. , Li, S., Ma, S., Wang, X.: \(m\)-polar fuzzy sets: an extension of bipolar fuzzy sets, Hindwai Publishing Corporation. Sci. World J. Article Id 416530, p. 8. http://dx.doi.org/10.1155/2014/416530
  10. 10.
    Ghorai, G., Pal, M.: Some properties of \(m\)-polar fuzzy graphs. Pac. Sci. Rev. A Nat. Sci. Eng. 18(1), 38–46 (2016)Google Scholar
  11. 11.
    Ghorai, G., Pal, M.: Certain types of product bipolar fuzzy graphs. Int. J. Appl. Comput. Math. (2015). doi: 10.1007/s40819-015-0112-0 Google Scholar
  12. 12.
    Ghorai, G., Pal, M.: On some operations and density of \(m\)-polar fuzzy graphs. Pac. Sci. Rev. A Nat. Sci. Eng. 17(1), 14–22 (2015)Google Scholar
  13. 13.
    Ghorai, G., Pal, M.: A study on \(m\)-polar fuzzy planar graphs. Int. J. Comput. Sci. Math. 7(3), 283–292 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Ghorai, G., Pal, M.: Faces and dual of \(m\)-polar fuzzy planar graphs. J. Intell. Fuzzy Syst. 31(3), 2043–2049 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Koczy, L.T.: Fuzzy graphs in the evaluation and optimization of networks. Fuzzy Sets Syst. 46, 307–319 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lee-kwang, H., Lee, K.M.: Fuzzy hypergraph and fuzzy partition. IEEE Trans. Syst. Man Cybernet. 25, 196–201 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Hypergraphs. Physica Verlag, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mordeson, J.N., Peng, C.S.: Operations on fuzzy graphs. Inf. Sci. 19, 159–170 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Nagoorgani, A., Radha, K.: On regular fuzzy graphs. J. Phys. Sci. 12, 33–40 (2008)zbMATHGoogle Scholar
  20. 20.
    Nair, P. S., Cheng, S.C.: Cliques and fuzzy cliques in fuzzy graphs. In: IFSA World Congress and 20th NAFIPS International Conference, vol. 4, pp. 2277–2280 (2001)Google Scholar
  21. 21.
    Rashmanlou, H., Samanta, S., Pal, M., Borzooei, R.A.: A study on bipolar fuzzy graphs. J. Intell. Fuzzy Syst. 28, 571–580 (2015)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Rashmanlou, H., Samanta, S., Pal, M., Borzooei, R.A.: Bipolar fuzzy graphs with categorical properties. Int. J. Comput. Intell. Syst. 8(5), 808–818 (2015)CrossRefzbMATHGoogle Scholar
  23. 23.
    Rashmanlou, H., Samanta, S., Pal, M., Borzooei, R.A.: Product of bipolar fuzzy graphs and their degree. Int. J. Gen. Syst. 45(1), 1–14 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Rashmanlou, H., Borzooei, R.A.: Product vague graphs and its applications. J. Intell. Fuzzy Syst. 30, 371–382 (2016)CrossRefzbMATHGoogle Scholar
  25. 25.
    Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Shimura, M. (eds.) Fuzzy Sets and Their Applications, vol. 513, pp. 77–95. Academic Press, New York (1975)Google Scholar
  26. 26.
    Samanta, S., Akram, M., Pal, M.: \(m\)-step fuzzy competition graphs. J. Appl. Math. Comput. 47(1), 461–472 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Samanta, S., Pal, M.: Irregular bipolar fuzzy graphs. Int. J. Appl. Fuzzy Sets 2, 91–102 (2012)Google Scholar
  28. 28.
    Samanta, S., Pal, M.: Fuzzy k-competition graphs and p-competitions fuzzy graphs. Fuzzy Inf. Eng. 5(2), 191–204 (2013)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Samanta, S., Pal, M.: Fuzzy planar graphs. IEEE Trans. Fuzzy Syst. 23(6), 1936–1942 (2015)CrossRefGoogle Scholar
  30. 30.
    Sunitha, M.S., Vijayakumar, A.: Complement of fuzzy graphs. Indian J. Pure Appl. Math. 33, 1451–1464 (2002)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Yang, H.L., Li, S.G., Yang, W.H., Lu, Y.: Notes on “Bipolar fuzzy graphs”. Inf. Sci. 242, 113–121 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2016

Authors and Affiliations

  1. 1.Department of Applied Mathematics with Oceanology and Computer ProgrammingVidyasagar UniversityMidnaporeIndia

Personalised recommendations