Numerical Simulation of Entropy Generation on MHD Nanofluid Towards a Stagnation Point Flow Over a Stretching Surface

  • M. M. Bhatti
  • M. M. Rashidi
Original Paper


In this article, entropy generation on MHD nanofluid towards a stagnation point flow over a permeable stretching surface has been investigated numerically. The governing equations of nanofluid are simplified using similarity variables with the help of momentum, energy and concentration equations. The resulting highly nonlinear coupled differential equations are solved with the help of successive linearization method and Chebyshev spectral collocation method. The impact of all the pertinent parameters such as Hartmann number, suction/injection parameter, heat source/sink parameter, Lewis number, Prandtl number, Brownian motion parameter, thermophoresis parameter are demonstrated graphically. Furthermore, the effect of Brinkman number and Reynolds number are also presented for entropy generation. It is analyzed that the velocity of the fluid increases due to greater influence of magnetic field and porosity parameter. Moreover, it is also observed that the entropy generation number increase due to the increment in Brinkman number and Reynolds number. Numerical comparison is also given with the existing published literature and found that the present results are in good agreement.


Entropy generation Nanofluid MHD Successive linearization method Chebyshev spectral collocation method 


  1. 1.
    Abolbashari, M.H., Freidoonimehr, N., Nazari, F., Rashidi, M.M.: Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 267, 256–267 (2014)CrossRefGoogle Scholar
  2. 2.
    Akbar, N.S., Khan, Z.H.: Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. J. Magn. Magn. Mater. 410, 72–80 (2016)CrossRefGoogle Scholar
  3. 3.
    Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Numerical solutions of magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J. Phys. 87(11), 1121–1124 (2013)CrossRefGoogle Scholar
  4. 4.
    Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin. J. Aeronaut. 26(6), 1389–1397 (2013)CrossRefGoogle Scholar
  5. 5.
    Akbar, N.S., Khan, Z.H., Nadeem, S.: The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. J. Mol. Liq. 196, 21–25 (2014)CrossRefGoogle Scholar
  6. 6.
    Akbar, N.S., Ebaid, A., Khan, Z.H.: Numerical analysis of magnetic field effects on Eyring–Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 382, 355–358 (2015)CrossRefGoogle Scholar
  7. 7.
    Bhatti, M.M., Shahid, A., Rashidi, M.M.: Numerical simulation of fluid flow over a shrinking porous sheet by successive linearization method. Alex. Eng. J. 55(1), 51–56 (2016)CrossRefGoogle Scholar
  8. 8.
    Chiam, T.C.: Stagnation-point flow towards a stretching plate. J. Phys. Soc. Jpn. 63(6), 2443–2444 (1994)CrossRefGoogle Scholar
  9. 9.
    Chol, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. FED 231, 99–106 (1995)Google Scholar
  10. 10.
    Ghalambaz, M., Izadpanahi, E., Noghrehabadi, A., Chamkha, A.: Study of the boundary layer heat transfer of nanofluids over a stretching sheet: passive control of nanoparticles at the surface. Can. J. Phys. 93(7), 725–733 (2014)CrossRefGoogle Scholar
  11. 11.
    Ghalambaz, M., Behseresht, A., Behseresht, J., Chamkha, A.: Effects of nanoparticles diameter and concentration on natural convection of the Al\(_2\)O\(_3\)–water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv. Powder Technol. 26(1), 224–235 (2015)CrossRefGoogle Scholar
  12. 12.
    Haq, R.U., Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14(1), 42–50 (2015)CrossRefGoogle Scholar
  13. 13.
    Ibrahim, W., Shankar, B.: MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput. Fluids 75, 1–10 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Khalili, S., Tamim, H., Khalili, A., Rashidi, M.M.: Unsteady convective heat and mass transfer in pseudoplastic nanofluid over a stretching wall. Adv. Powder Technol. 26(5), 1319–1326 (2015)CrossRefGoogle Scholar
  15. 15.
    Mahapatra, T.R., Gupta, A.S.: Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 38(6), 517–521 (2002)CrossRefGoogle Scholar
  16. 16.
    Malvandi, A., Ganji, D.D.: Effects of nanoparticle migration on force convection of alumina/water nanofluid in a cooled parallel-plate channel. Adv. Powder Technol. 25(4), 1369–1375 (2014)CrossRefGoogle Scholar
  17. 17.
    Mehmood, R., Nadeem, D.S., Akbar, N.: Oblique stagnation flow of Jeffery fluid over a stretching convective surface: optimal solution. Int. J. Numer. Methods Heat Fluid Flow 25(3), 454–471 (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Modest, M.F.: Radiative Heat Transfer. Academic Press, London (2013)Google Scholar
  19. 19.
    Nadeem, S., Haq, R.U., Akbar, N.S.: MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans. Nanotechnol. 13(1), 109–115 (2014)CrossRefGoogle Scholar
  20. 20.
    Noghrehabadi, A., Ghalambaz, M., Ghanbarzadeh, A.: Heat transfer of magnetohydrodynamic viscous nanofluids over an isothermal stretching sheet. J. Thermophys. Heat Transf. 26(4), 686–689 (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Noghrehabadi, A., Pourrajab, R., Ghalambaz, M.: Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int. J. Therm. Sci. 54, 253–261 (2012)CrossRefGoogle Scholar
  22. 22.
    Noghrehabadi, A., Saffarian, M.R., Pourrajab, R., Ghalambaz, M.: Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. J. Mech. Sci. Technol. 27(3), 927–937 (2013)CrossRefGoogle Scholar
  23. 23.
    Noghrehabadi, A., Pourrajab, R., Ghalambaz, M.: Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions. Heat Mass Transf. 49(9), 1357–1366 (2013)CrossRefGoogle Scholar
  24. 24.
    Pop, S.R., Grosan, T., Pop, I.: Radiation effects on the flow near the stagnation point of a stretching sheet. Techn. Mech. 25(2), 100–106 (2004)Google Scholar
  25. 25.
    Qing, J., Bhatti, M.M., Abbas, M.A., Rashidi, M.M., Ali, M.E.S.: Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18(4), 123 (2016)CrossRefGoogle Scholar
  26. 26.
    Rashidi, M.M., Abelman, S., Mehr, N.F.: Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf. 62, 515–525 (2013)CrossRefGoogle Scholar
  27. 27.
    Rashidi, M.M., Rostami, B., Freidoonimehr, N., Abbasbandy, S.: Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng. J. 5(3), 901–912 (2014)CrossRefGoogle Scholar
  28. 28.
    Rashidi, M.M., Freidoonimehr, N., Hosseini, A., Bég, O.A., Hung, T.K.: Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49(2), 469–482 (2014)CrossRefzbMATHGoogle Scholar
  29. 29.
    Rashidi, M.M., Ganesh, N.V., Hakeem, A.A., Ganga, B.: Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liq. 198, 234–238 (2014)CrossRefGoogle Scholar
  30. 30.
    Rashidi, M.M., Bagheri, S., Momoniat, E., Freidoonimehr, N.: Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng. J. (2015). doi: 10.1016/j.asej.2015.08.012
  31. 31.
    Shahmohamadi, H., Rashidi, M.M.: VIM solution of squeezing MHD nanofluid flow in a rotating channel with lower stretching porous surface. Adv. Powder Technol. 27, 171–178 (2015)CrossRefGoogle Scholar
  32. 32.
    Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., Soleimani, S.: Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Adv. Powder Technol. 24(6), 980–991 (2013)CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami, M., Hatami, M., Ganji, D.D.: Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol. 246, 327–336 (2013)CrossRefGoogle Scholar
  34. 34.
    Sheikholeslami, M., Ganji, D.D., Javed, M.Y., Ellahi, R.: Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 374, 36–43 (2015)CrossRefGoogle Scholar
  35. 35.
    Sheikholeslami, M., Rashidi, M.M., Ganji, D.D.: Effect of non-uniform magnetic field on forced convection heat transfer of-water nanofluid. Comput. Methods Appl. Mech. Eng. 294, 299–312 (2015)CrossRefGoogle Scholar
  36. 36.
    Sheikholeslami, M., Rashidi, M.M., Ganji, D.D.: Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J. Mol. Liq. 212, 117–126 (2015)CrossRefGoogle Scholar
  37. 37.
    Sheikholeslami, M., Rashidi, M.M., Al Saad, D.M., Firouzi, F., Rokni, H.B., Domairry, G.: Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects. J. King Saud Univ. Sci. (2015). doi: 10.1016/j.jksus.2015.06.003
  38. 38.
    Siegel, R., Howell, J.R.: Thermal radiation heat transfer. NASA STI/Recon Technical Report A, 93, 17522 (1992)Google Scholar
  39. 39.
    Uddin, M.J., Khan, W.A., Ismail, A.I.: MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition. PLoS One 7(11), e49499 (2012)CrossRefGoogle Scholar
  40. 40.
    Wang, C.Y.: Stagnation flow towards a shrinking sheet. Int. J. Non-linear Mech. 43(5), 377–382 (2008)CrossRefGoogle Scholar
  41. 41.
    Zaraki, A., Ghalambaz, M., Chamkha, A.J., Ghalambaz, M., De Rossi, D.: Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv. Powder Technol. 26(3), 935–946 (2015)CrossRefGoogle Scholar
  42. 42.
    Zargartalebi, H., Ghalambaz, M., Noghrehabadi, A., Chamkha, A.: Stagnation-point heat transfer of nanofluids toward stretching sheets with variable thermo-physical properties. Adv. Powder Technol. 26(3), 819–829 (2015)CrossRefGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2016

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management SystemsTongji UniversityShanghaiChina
  3. 3.ENN-Tongji Clean Energy Institute of Advanced StudiesShanghaiChina

Personalised recommendations