Annals of PDE

, 4:19 | Cite as

Mean-Field Dynamics for Ginzburg–Landau Vortices with Pinning and Forcing

  • Mitia Duerinckx
  • Sylvia SerfatyEmail author


We consider the time-dependent 2D Ginzburg–Landau equation in the whole plane with terms modeling impurities and applied currents. The Ginzburg–Landau vortices are then subjected to three forces: their mutual repulsive Coulomb-like interaction, the applied current pushing them in a fixed direction, and the pinning force attracting them towards the impurities. The competition between the three is expected to lead to complicated glassy effects. We rigorously study the limit in which the number of vortices \(N_\varepsilon \) blows up as the inverse Ginzburg–Landau parameter \(\varepsilon \) goes to 0, and we derive via a modulated energy method fluid-like mean-field evolution equations. These results hold for parabolic, conservative, and mixed-flow dynamics in appropriate regimes of \(N_\varepsilon \uparrow \infty \). Finally, we briefly discuss some natural homogenization questions raised by this study.


Ginzburg-Landau Superconductors Vortices Pinning Mean-field limit 



The work of MD is supported by F.R.S.-FNRS (Belgian National Fund for Scientific Research) through a Research Fellowship. The authors thank Anne-Laure Dalibard, Jean-Pierre Eckmann, and Thierry Giamarchi for stimulating discussions.


  1. 1.
    Abeyratne, R., Chu, C., James, R.D.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu–Al–Ni shape memory alloy. Philos. Mag. A 73, 457–497 (1996)ADSGoogle Scholar
  2. 2.
    Aftalion, A.: Vortices in Bose–Einstein Condensates Volum 67 Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston (2006)Google Scholar
  3. 3.
    Aftalion, A., Sandier, É., Serfaty, S.: Pinning phenomena in the Ginzburg–Landau model of superconductivity. J. Math. Pures Appl. 80(3), 339–372 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    André, N., Bauman, P., Phillips, D.: Vortex pinning with bounded fields for the Ginzburg–Landau equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(4), 705–729 (2003)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Arecchi, F.T.: Space-time complexity in nonlinear optics. Physica D 51, 450–464 (1991)ADSzbMATHGoogle Scholar
  7. 7.
    Armstrong, S., Cardaliaguet, P.: Stochastic homogenization of quasilinear Hamilton–Jacobi equations and geometric motions. J. Eur. Math. Soc. 20(4), 797–864 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Béthuel, F., Danchin, R., Gravejat, P., Saut, J.-C., Smets. D.: Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii. In: Séminaire: Équations aux Dérivées Partielles. 2008–2009, Sémin. Équ. Dériv. Partielles, pages Exp. No. I, 12. École Polytech., Palaiseau, (2010)Google Scholar
  9. 9.
    Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D.: On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation I. Int. Math. Res. Not. IMRN 2009(14), 2700–2748 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D.: On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation II. Commun. Partial Differ. Equ. 35(1), 113–164 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bethuel, F., Smets, D.: A remark on the Cauchy problem for the 2D Gross–Pitaevskii equation with nonzero degree at infinity. Differ. Integral Equ. 20(3), 325–338 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bhattacharya, K.: Phase boundary propagation in a heterogeneous body. Proc. Math. Phys. Eng. Sci. R. Soc. Lond. Ser. A 455(1982), 757–766 (1999)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66(4), 1125–1388 (1994)ADSGoogle Scholar
  14. 14.
    Bouchut, F., Golse, F., Pulvirenti. M.: Kinetic equations and asymptotic theory, volume 4 of series in applied mathematics (Paris). In: Perthame, B., Desvillettes, L. (eds) Gauthier-Villars, Éditions Scientifiques et Médicales, Elsevier, Paris, (2000)Google Scholar
  15. 15.
    Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6(4), 399–424 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Brazovskii, S., Natermann, T.: Pinning and sliding of driven elastic systems: from domain walls to charge density waves. Adv. Phys. 53(2), 177–252 (2004)ADSGoogle Scholar
  17. 17.
    Brenier, Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 25(3–4), 737–754 (2000)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Camassa, R., Holm, D.D., Levermore, C.D.: Long-time effects of bottom topography in shallow water. Physica D 98(2–4), 258–286 (1996)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Camassa, R., Holm, D.D., Levermore, C.D.: Long-time shallow-water equations with a varying bottom. J. Fluid Mech. 349, 173–189 (1997)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Carles, R., Danchin, R., Saut, J.-C.: Madelung, gross–pitaevskii and korteweg. Nonlinearity 25(10), 2843–2873 (2012)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Chapman, J., Du, Q., Gunzburger, M.: A Ginzburg–Landau type model of superconducting/normal junctions including Josephson junctions. Eur. J. Appl. Math. 6, 97–114 (1995)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Chapman, S.J.: A hierarchy of models for type-II superconductors. SIAM Rev. 42(4), 555–598 (2000)ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Chapman, S.J., Richardson, G.: Vortex pinning by inhomogeneities in type-II superconductors. Physica D 108, 397–407 (1997)ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Chapman, S.J., Rubinstein, J., Schatzman, M.: A mean-field model of superconducting vortices. Eur. J. Appl. Math. 7(2), 97–111 (1996)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Chauve, P., Giamarchi, T., Le Doussal, P.: Creep via dynamical functional renormalization group. Europhys. Lett. 44(1), 110–115 (1998)ADSGoogle Scholar
  26. 26.
    Chauve, P., Giamarchi, T., Le Doussal, P.: Creep and depinning in disordered media. Phys. Rev. B 62(10), 6241–6267 (2000)ADSGoogle Scholar
  27. 27.
    Chen, Z.M., Hoffmann, K.-H., Liang, J.: On a nonstationary Ginzburg–Landau superconductivity model. Math. Methods Appl. Sci. 16(12), 855–875 (1993)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Colliander, J.E., Jerrard, R.L.: Vortex dynamics for the Ginzburg–Landau–Schrödinger equation. Int. Math. Res. Notices 1998(7), 333–358 (1998)zbMATHGoogle Scholar
  29. 29.
    Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70(2), 167–179 (1979)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Dafermos, C.M.: Stability of motions of thermoelastic fluids. J. Therm. Stress. 2, 127–134 (1979)Google Scholar
  31. 31.
    Dalibard, A.-L.: Homogenization of a quasilinear parabolic equation with vanishing viscosity. J. Math. Pures Appl. 86(2), 133–154 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Dalibard, A.-L.: Homogenization of linear transport equations in a stationary ergodic setting. Commun. Partial Differ. Equ. 33(4–6), 881–921 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Dalibard, A.-L.: Homogenization of non-linear scalar conservation laws. Arch. Ration. Mech. Anal. 192(1), 117–164 (2009)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Deang, J., Du, Q., Gunzburger, M.D.: Stochastic dynamics of Ginzburg–Landau vortices in superconductors. Phys. Rev. B 64(5), 52506–52510 (2001)ADSGoogle Scholar
  35. 35.
    DiPerna, R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188 (1979)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Dirr, N., Yip, N.K.: Pinning and de-pinning phenomena in front propagation in heterogeneous media. Interfaces Free Bound. 8(1), 79–109 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Dorsey, A.T.: Vortex motion and the hall effect in type-II superconductors: a time-dependent Ginzburg–Landau theory approach. Phys. Rev. B 46(13), 8376 (1992)ADSGoogle Scholar
  38. 38.
    Dos Santos, M.: The Ginzburg–Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case. Indiana Univ. Math. J. 62(2), 551–641 (2013)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Duerinckx, M.: Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal. 48(3), 2269–2300 (2016)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Duerinckx, M.: Well-posedness for mean-field evolutions arising in superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(5), 1267–1319 (2017)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Duerinckx, M., Serfaty, S.: Dynamics of interacting particles in disordered media. In preparation (2018)Google Scholar
  42. 42.
    Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Theory of collective flux creep. Phys. Rev. Lett. 63, 2303 (1989)ADSGoogle Scholar
  43. 43.
    Frenod, E., Hamdache, K.: Homogenisation of transport kinetic equations with oscillating potentials. Proc. R. Soc. Edinb. Sect. A 126(6), 1247–1275 (1996)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Gardiner, C.W., Anglin, J.R., Fudge, T.I.A.: The stochastic Gross–Pitaevskii equation. J. Phys. B At. Mol. Opt. Phys. 35, 1555–1582 (2002)ADSGoogle Scholar
  45. 45.
    Gardiner, C.W., Davis, M.J.: The stochastic Gross–Pitaevskii equation: II. J. Phys. B: At. Mol. Opt. Phys. 36, 4731–4753 (2003)ADSGoogle Scholar
  46. 46.
    Giamarchi, T.: Disordered elastic media. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, vol. 112, pp. 2019–2038. Springer, New York (2009)Google Scholar
  47. 47.
    Giamarchi, T., Bhattacharya, S.: Vortex phases. In: High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy Volume 595 of Lecture Notes in Physics, pp. 314–360. Springer, Berlin (2002)Google Scholar
  48. 48.
    Giamarchi, T., Le Doussal, P.: Elastic theory of flux lattices in presence of weak disorder. Phys. Rev. B 52, 1242 (1995)ADSGoogle Scholar
  49. 49.
    Gor’kov, L.P., Eliashberg, G.M.: Generalization of Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP 27(2), 328–334 (1968)ADSGoogle Scholar
  50. 50.
    Grunewald, N.: Barkhausen effect: a stick-slip motion in a random medium. Methods Appl. Anal. 12(1), 29–41 (2005)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Helffer, B., Klein, M., Nier, F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Mat. Contemp. 26, 41–85 (2004)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Hohenberg, P., Halperin, B.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)ADSGoogle Scholar
  53. 53.
    Ioffe, L.B., Vinokur, V.M.: Dynamics of interfaces and dislocations in disordered media. J. Phys. C 20(36), 6149 (1987)ADSGoogle Scholar
  54. 54.
    Jabin, P.-E., Tzavaras, A.E.: Kinetic decomposition for periodic homogenization problems. SIAM J. Math. Anal. 41(1), 360–390 (2009)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Jerrard, R.L., Smets, D.: Vortex dynamics for the two dimensional non homogeneous Gross–Pitaevskii equation. Ann. Scuola Norm. Sup. Pisa 14(3), 729–766 (2015)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Jerrard, R.L., Soner, H.M.: Dynamics of Ginzburg–Landau vortices. Arch. Ration. Mech. Anal. 142(2), 99–125 (1998)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Jerrard, R.L., Spirn, D.: Hydrodynamic limit of the Gross–Pitaevskii equation. Commun. Partial Differ. Equ. 40(2), 135–190 (2015)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Jian, H.-Y., Song, B.-H.: Vortex dynamics of Ginzburg–Landau equations in inhomogeneous superconductors. J. Differ. Equ. 170(1), 123–141 (2001)ADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    Kardar, M.: Nonequilibrium dynamics of interfaces and lines. Preprint, arXiv:1007.3762 (1997)
  61. 61.
    Keel, M., Tao, T.: Endpoint strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Kurzke, M., Marzuola, J.L., Spirn, D.: Gross–Pitaevskii vortex motion with critically-scaled inhomogeneities. SIAM J. Math. Anal. 49(1), 471–500 (2017)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Kurzke, M., Spirn, D.: Quantitative equipartition of the Ginzburg–Landau energy with applications. Indiana Univ. Math. J. 59(6), 2077–2092 (2010)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Kurzke, M., Spirn, D.: Vortex liquids and the Ginzburg–Landau equation. In: Forum of Mathematics, Sigma, vol. 2, pp. e11–63 (2014)Google Scholar
  65. 65.
    Larkin, A.: Effect of inhomogeneities on the structure of the mixed state of superconductors. Sov. Phys. JETP 31, 784–786 (1970)ADSGoogle Scholar
  66. 66.
    Lassoued, L., Mironescu, P.: Ginzburg–Landau type energy with discontinuous constraint. J. Anal. Math. 77, 1–26 (1999)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Lin, F.-H.: A remark on the previous paper: some dynamical properties of Ginzburg-Landau vortices. Commun. Pure Appl. Math. 49(4), 361–364 (1996)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Lin, F.-H.: Some dynamical properties of Ginzburg–Landau vortices. Commun. Pure Appl. Math. 49(4), 323–359 (1996)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Lin, F.-H., Xin, J.X.: On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation. Commun. Math. Phys. 200(2), 249–274 (1999)ADSMathSciNetzbMATHGoogle Scholar
  70. 70.
    Liu, M., Liu, X.D., Wang, J., Xing, D.Y., Lin, H.Q.: Dynamic phase diagram in a driven vortex lattice with random pinning and thermal fluctuations. Phys. Lett. A 308, 149–156 (2003)ADSGoogle Scholar
  71. 71.
    Menon, G.: Gradient systems with wiggly energies and related averaging problems. Arch. Ration. Mech. Anal. 162(3), 193–246 (2002)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Meyers, N.G.: An \(L^{p}\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 3(17), 189–206 (1963)zbMATHGoogle Scholar
  73. 73.
    Miot, E.: Dynamics of vortices for the complex Ginzburg–Landau equation. Anal. PDE 2(2), 159–186 (2009)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Narayan, O., Fisher, D.S.: Critical behavior of sliding charge-density waves in \(4-\varepsilon \) dimensions. Phys. Rev. B 46, 11520–11549 (1992)ADSGoogle Scholar
  75. 75.
    Nattermann, T.: Interface roughening in systems with quenched random impurities. Europhys. Lett. 4(11), 1241 (1987)ADSGoogle Scholar
  76. 76.
    Nattermann, T.: Scaling approach to pinning: charge-density waves and giant flux creep in superconductors. Phys. Rev. Lett. 64(20), 2454–2457 (1990)ADSGoogle Scholar
  77. 77.
    Nattermann, T., Stepanow, S., Tang, L.H., Leschhorn, H.: Dynamics of interface depinning in a disordered medium. J. Phys. II France 2, 1483–1488 (1992)Google Scholar
  78. 78.
    Neu, J.C.: Vortices in complex scalar fields. Physica D 43, 385–406 (1990)ADSMathSciNetzbMATHGoogle Scholar
  79. 79.
    Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Peres, L., Rubinstein, J.: Vortex dynamics in \(U(1)\) Ginzburg–Landau models. Physica D 64, 299–309 (1993)ADSMathSciNetzbMATHGoogle Scholar
  81. 81.
    Reichhardt, C., Olson Reichhardt, C.J.: Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. Rep. Prog. Phys. 80, 026501 (2017)ADSGoogle Scholar
  82. 82.
    Rougerie, N.: La théorie de Gross–Pitaevskii pour un condensat de Bose–Einstein en rotation: vortex et transitions de phase. Ph.D. Thesis, Université Pierre et Marie Curie (2010)Google Scholar
  83. 83.
    Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation, Volume 1971 Lecture Notes in Mathematics. Springer, Berlin (2009)Google Scholar
  84. 84.
    Sandier, É.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Sandier, É., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Sandier, É., Serfaty, S.: A product-estimate for Ginzburg–Landau and corollaries. J. Funct. Anal. 211(1), 219–244 (2004)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Sandier, É., Serfaty, S.: Vortices in the magnetic Ginzburg–Landau model. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser Boston Inc., Boston (2007)Google Scholar
  88. 88.
    Sandier, É., Serfaty, S.: Improved lower bounds for Ginzburg–Landau energies via mass displacement. Anal. PDE 4(5), 757–795 (2011)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Sandier, É., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)ADSMathSciNetzbMATHGoogle Scholar
  90. 90.
    Schmid, A.: A time dependent Ginzburg–Landau equation and its application to the problem of resistivity in the mixed state. Physik der kondensierten Materie 5(4), 302–317 (1966)ADSGoogle Scholar
  91. 91.
    Schmid, A.: Diamagnetic susceptibility at the transition to the superconducting state. Phys. Rev. 180(2), 527–529 (1969)ADSGoogle Scholar
  92. 92.
    Serfaty, S.: Mean-field limits of the Gross–Pitaevskii and parabolic Ginzburg–Landau equations. J. Am. Math. Soc. 30, 713–768 (2017)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Serfaty, S.: Mean-field limit for Coulomb flows. Preprint, arXiv:1803.08345 (2018)
  94. 94.
    Serfaty, S., Tice, I.: Lorentz space estimates for the Ginzburg–Landau energy. J. Funct. Anal. 254(3), 773–825 (2008)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Serfaty, S., Tice, I.: Ginzburg–Landau vortex dynamics with pinning and strong applied currents. Arch. Ration. Mech. Anal. 201(2), 413–464 (2011)MathSciNetzbMATHGoogle Scholar
  96. 96.
    Stoof, H.T.C.: Coherent versus incoherent dynamics during Bose–Einstein condensation in atomic gases. J. Low Temp. Phys. 114, 11–108 (1999)ADSGoogle Scholar
  97. 97.
    Struwe, M.: On the asymptotic behavior of minimizers of the Ginzburg–Landau model in 2 dimensions. Differ. Integral Equ. 7(5–6), 1613–1624 (1994)MathSciNetzbMATHGoogle Scholar
  98. 98.
    Świsłocki, T., Deuar, P.: Quantum fluctuation effects on the quench dynamics of thermal quasicondensates. J. Phys. B: At. Mol. Opt. Phys. 49(14), 145303 (2016)ADSGoogle Scholar
  99. 99.
    Tice, I.: Ginzburg–Landau vortex dynamics driven by an applied boundary current. Commun. Pure Appl. Math. 63(12), 1622–1676 (2010)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Tilley, D., Tilley, J.: Superfluidity and Superconductivity, 2nd edn. Adam Hilger, Bristol (1986)Google Scholar
  101. 101.
    Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill Inc, New York (1996)Google Scholar
  102. 102.
    E, W.: Homogenization of linear and nonlinear transport equations. Commun. Pure Appl. Math. 45(3), 301–326 (1992)Google Scholar
  103. 103.
    E, W.: Dynamics of vortex liquids in Ginzburg–Landau theories with applications to superconductivity. Phys. Rev. B 50, 1126–1135 (1994)Google Scholar
  104. 104.
    Yau, H.-T.: Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys. 22(1), 63–80 (1991)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université Libre de BruxellesBrusselsBelgium
  2. 2.CNRS, UMR 7598, Laboratoire Jacques-Louis LionsSorbonne UniversitéParisFrance
  3. 3.Courant InstituteNew York UniversityNew YorkUSA
  4. 4.Institut Universitaire de FranceParisFrance

Personalised recommendations