Advertisement

Annals of PDE

, 4:15 | Cite as

A Vector Field Approach to Almost-Sharp Decay for the Wave Equation on Spherically Symmetric, Stationary Spacetimes

  • Y. Angelopoulos
  • S. AretakisEmail author
  • D. Gajic
Manuscript
  • 35 Downloads

Abstract

We present a new vector field approach to almost-sharp decay for the wave equation on spherically symmetric, stationary and asymptotically flat spacetimes. Specifically, we derive a new hierarchy of higher-order weighted energy estimates by employing appropriate commutator vector fields. In cases where an integrated local energy decay estimate holds, like in the case of sub-extremal Reissner–Nordström black holes, this hierarchy leads to almost-sharp global energy and pointwise time-decay estimates with decay rates that go beyond those obtained by the traditional vector field method. Our estimates play a fundamental role in our companion paper where precise late-time asymptotics are obtained for linear scalar fields on such backgrounds.

Keywords

Wave equation Asymptotics Black holes Stability problems 

Notes

Acknowledgements

We would like to thank Mihalis Dafermos and Georgios Moschidis for several insightful discussions. S. Aretakis acknowledges support through NSF Grant DMS-1600643 and a Sloan Research Fellowship. D. Gajic acknowledges support by the European Research Council Grant No. ERC-2011-StG 279363-HiDGR.

References

  1. 1.
    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182, 787–853 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Angelopoulos, Y.: Global spherically symmetric solutions of non-linear wave equations with null condition on extremal Reissner–Nordström spacetimes. Int. Math. Res Not. 11, 3279–3355 (2016)CrossRefGoogle Scholar
  3. 3.
    Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on extremal Reissner–Nordström backgrounds. arXiv:1807.03802
  4. 4.
    Angelopoulos, Y., Aretakis, S., Gajic, D.: The trapping effect on degenerate horizons. To appear in Ann Henri Poincaré 12(8), 1491–1538 (2015). arXiv:1512.09094 zbMATHGoogle Scholar
  5. 5.
    Angelopoulos, Y., Aretakis, S., Gajic, D.: Asymptotic blow-up for a class of semi-linear wave equations on extremal Reissner–Nordström. preprint (2016). arXiv:1612.01562
  6. 6.
    Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on spherically symmetric, stationary backgrounds. Adv. Math. 323, 529–621 (2018). arXiv:1612.01566 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 12, 1491–1538 (2011)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Aretakis, S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263, 2770–2831 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Aretakis, S.: The characteristic gluing problem and conservation laws for the wave equation on null hypersurfaces. Annals PDE 3(1), 2017. arXiv:1310.1365
  11. 11.
    Aretakis, S.: A note on instabilities of extremal black holes from afar. Class. Quantum Gravity 30, 095010 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Aretakis, S.: On a non-linear instability of extremal black holes. Phys. Rev. D 87, 084052 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Aretakis, S.: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19, 507–530 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Blue, P., Soffer, A.: Phase space analysis on some black hole manifolds. J. Funct. Anal. 256, 1–90 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Casals, M., Gralla, S.E., Zimmerman, P.: Horizon instability of extremal Kerr black holes: nonaxisymmetric modes and enhanced growth rate. Phys. Rev. D 94, 064003 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Christodoulou, D.: Global solutions of nonlinear hyperbolic equations for small initial data. Commun. Pure Appl. Math. 39, 267–282 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Christodoulou, D.: Nonlinear nature of gravitation and gravitational-wave experiments. Phys. Rev. Lett. 67, 1486–1489 (1991)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1994)CrossRefGoogle Scholar
  19. 19.
    Costa, J.L., Franzen, A.: Bounded energy waves on the black hole interior of Reissner-Nordström-de Sitter. Ann Henri Poincaré. 18(10), 3371–3398 (2017)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 3: mass inflation and extendibility of the solutions. (2014). arXiv:1406.7261
  21. 21.
    Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion. Class. Quantum Gravity 32(1), 015017 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2: structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339(3), 903–947 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dafermos, M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. LVIII, 0445–0504 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Dafermos, M.: Black holes without spacelike singularities. Commun. Math. Phys. 332, 729–757 (2014)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. (2016). arXiv:1601.06467
  27. 27.
    Dafermos, M., Rodnianski, I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162, 381–457 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Dafermos, M., Rodnianski, I.: The redshift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62, 859–919 (2009). arXiv:gr-qc/0512119 CrossRefGoogle Scholar
  29. 29.
    Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: XVIth International Congress on Mathematical Physics, pp. 421–432 (2010)Google Scholar
  30. 30.
    Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: Evolution Equations, Clay Mathematics Proceedings, vol. 17. American Mathematical Society, Providence, pp. 97–205 (2013). arXiv:0811.0354
  31. 31.
    Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes. Commun. Math. Phys. (2016).  https://doi.org/10.1007/s00220-016-2771-z CrossRefzbMATHGoogle Scholar
  32. 32.
    Donninger, R., Schlag, W., Soffer, A.: On pointwise decay of linear waves on a Schwarzschild black hole background. Commun. Math. Phys. 309, 51–86 (2012)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics (1998)Google Scholar
  34. 34.
    Franzen, A.: Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343, 601–650 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asympotic structure. Commun. Math. Phys. 107, 587–609 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    Gajic, D.: Linear waves in the interior of extremal black holes II. Ann Henri Poincaré 18(12), 4005–4081 (2017). arXiv:1512.08953 ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Gajic, D.: Linear waves in the interior of extremal black holes I. Commun. Math. Phys. (2016).  https://doi.org/10.1007/s00220-016-2800-y CrossRefzbMATHGoogle Scholar
  38. 38.
    Gralla, S.E., Zimmerman, A., Zimmerman, P.: Transient instability of rapidly rotating black holes. Phys. Rev. D 94, 084017 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Gundlach, C., Price, R., Pullin, J.: Late-time behavior of stellar collapse and explosions. II: nonlinear evolution. Phys. Rev. D 49, 890–899 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    Hintz, P.: Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime. (2015). arXiv:1512.08003
  41. 41.
    Hintz, P., Vasy, A.: Analysis of linear waves near the Cauchy horizon of cosmological black holes. (2015). arXiv:1512.08004
  42. 42.
    Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes. (2016). arXiv:1606.04014
  43. 43.
    Hörmander, L.: Linear Partial Differential Operators, vol. 1. Springer, Berlin (1976)zbMATHGoogle Scholar
  44. 44.
    Ionescu, A.D., Klainerman, S.: On the global stability of the wave-map equation in Kerr spaces with small angular momentum. Ann. PDE 1(1), 1–78 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Keir, J.: Slowly decaying waves on spherically symmetric spacetimes and an instability of ultracompact neutron stars. Class. Quantum Gravity 33, 135009 (2016)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38, 321–332 (1985)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Klainerman, S.: The null condition and global existence to nonlinear wave equations. Lectures in Applied Mathematics, pp. 293–326 (1986)Google Scholar
  48. 48.
    Klainerman, S.: Long time behavior of solutions to nonlinear wave equations. In: Proceedings of the International Congress of Mathematics 2 (Warszawa), pp. 1209–1215 (1983)Google Scholar
  49. 49.
    Kronthaler, J.: Decay rates for spherical scalar waves in a Schwarzschild geometry. (2007). arXiv:0709.3703
  50. 50.
    Lucietti, J., Murata, K., Reall, H.S., Tanahashi, N.: On the horizon instability of an extreme Reissner–Nordström black hole. J. High Energy Phys. 1303, 035 (2013). arXiv:1212.2557 ADSCrossRefGoogle Scholar
  51. 51.
    Luk, J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11, 805–880 (2010)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Luk, J.: A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole. Anal. PDE 3(5), 553–625 (2012)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat data I: Interior of the black hole region. arXiv:1702.05715
  54. 54.
    Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat data II: Exterior of the black hole region. arXiv:1702.05716
  55. 55.
    Luk, J., Oh, S.-J.: Proof of linear instability of the Reissner-Nordström Cauchy horizon under scalar perturbations. (2015). arXiv:1501.04598
  56. 56.
    Luk, J., Sbierski, J.: Instability results for the wave equation in the interior of Kerr black holes. J. Funct. Anal. 271(7), 1948–1995 (2016)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary spacetimes. Adv. Math. 230, 995–1028 (2012)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)Google Scholar
  59. 59.
    Morawetz, C.S.: The limiting amplitude principle. Commun. Pure Appl. Math. 15, 349–361 (1962)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Moschidis, G.: Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes. Ann. PDE 2, 5 (2016)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Moschidis, G.: A proof of Friedman’s ergosphere instability for scalar waves. Commun. Math. Phys. 358(2), 437–520 (2018). arXiv:1608.02035 ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Moschidis, G.: The \(r^{p}\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2, 6 (2016)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Newman, E.T., Penrose, R.: 10 exact gravitationally conserved quantities. Phys. Rev. Lett. 15, 231 (1965)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Newman, E.T., Penrose, R.: New conservation laws for zero rest mass fields in asympotically flat space-time. Proc. R. Soc. A 305, 175204 (1968)CrossRefGoogle Scholar
  65. 65.
    Ori, A.: Late-time tails in extremal Reissner–Nordström spacetime. (2013). arXiv:1305.1564
  66. 66.
    Price, R.: Non-spherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 3, 2419–2438 (1972)ADSCrossRefGoogle Scholar
  67. 67.
    Ralston, J.: Gaussian beams and the propagation of singularities. Stud. Partial Differ. Eq. MAA Stud. Math. 23, 206–248 (1983)MathSciNetGoogle Scholar
  68. 68.
    Sbierski, J.: Characterisation of the energy of Gaussian beams on Lorentzian manifolds with applications to black hole spacetimes. Anal. Part. Differ. Eq. 8, 1379–1420 (2015)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Schlue, V.: Linear waves on higher dimensional Schwarzschild black holes. Anal. PDE 6(3), 515–600 (2013)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Sela, O.: Late-time decay of perturbations outside extremal charged black hole. Phys. Rev. D 93, 024054 (2016)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Sogge, C.D.: Lectures on Non-linear Wave Equations. International Press, Boston (2008)zbMATHGoogle Scholar
  72. 72.
    Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135, 361–401 (2013)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Yang, S.: Global solutions of nonlinear wave equations in time dependent inhomogeneous media. Arch. Ration. Mech. Anal. 209, 683–728 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA
  3. 3.Department of MathematicsUniversity of Toronto ScarboroughTorontoCanada
  4. 4.Department of MathematicsUniversity of TorontoTorontoCanada
  5. 5.Department of MathematicsImperial College LondonLondonUK
  6. 6.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations