Advertisement

Annals of PDE

, 4:12 | Cite as

Stability of Minkowski Space-Time with a Translation Space-Like Killing Field

  • Cécile Huneau
Manuscript
  • 79 Downloads

Abstract

In this paper we prove the nonlinear stability of Minkowski space-time with a translation Killing field. In the presence of such a symmetry, the \(3+1\) vacuum Einstein equations reduce to the \(2+1\) Einstein equations with a scalar field. We work in generalised wave coordinates. In this gauge Einstein’s equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in this paper is due to the decay in \(\frac{1}{\sqrt{t}}\) of free solutions to the wave equation in 2 dimensions, which is weaker than in 3 dimensions. This weak decay seems to be an obstruction for proving a stability result in the usual wave coordinates. In this paper we construct a suitable generalized wave gauge in which our system has a “cubic weak null structure”, which allows for the proof of global existence.

Keywords

Einstein equations Nonlinear stability Wave coordinates 2 dimensional wave equations 

Notes

Acknowledgements

This paper has benefit from the insight of many people. The author would like to thank in particular Jérémie Szeftel, Qian Wang, Spyros Alexakis, Mihalis Dafermos and Igor Rodnianski for the interesting conversations.

References

  1. 1.
    Alinhac, S.: The null condition for quasilinear wave equations in two space dimensions I. Invent. Math. 145(3), 597–618 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alinhac, S.: An example of blowup at infinity for a quasilinear wave equation. Astérisque (284), 1–91 (2003). Autour de l’analyse microlocaleGoogle Scholar
  3. 3.
    Andersson, L., Gudapati, N., Szeftel, J.: Global regularity for the 2 + 1 dimensional equivariant Einstein-Wave map system. Ann. PDE (2017).  https://doi.org/10.1007/s40818-017-0030-z MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ashtekar, A., Bičák, J., Schmidt, B.: Asymptotic structure of symmetry-reduced general relativity. Phys. Rev. D (3) 55(2), 669–686 (1997)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Beck, G.: Zur Theorie binärer Gravitationsfelder. Z. Phys. 33(14), 713–728 (1925)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  7. 7.
    Choquet-Bruhat, Y., Moncrief, V.: Nonlinear stability of an expanding universe with the \(S^1\) isometry group. In: Partial Differential Equations and Mathematical Physics (Tokyo, 2001), volume 52 of Progr. Nonlinear Differential Equations Appl., pp. 57–71. Birkhäuser Boston, Boston, MA (2003)Google Scholar
  8. 8.
    Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  9. 9.
    Godin, P.: Lifespan of solutions of semilinear wave equations in two space dimensions. Commun. Partial Differ. Equ. 18(5–6), 895–916 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes. arXiv:1606.04014 (2016)
  11. 11.
    Hoshiga, A.: The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space. Funkcial. Ekvac. 49(3), 357–384 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huneau, C.: Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case. Ann. Henri Poincaré 17(2), 271–299 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huneau, C.: Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case II. Asymptot. Anal. 96(1), 51–89 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huneau, C.: Stability in exponential time of Minkowski Space-time with a translation space-like Killing field. Ann. PDE (2016).  https://doi.org/10.1007/s40818-016-0012-6 MathSciNetzbMATHGoogle Scholar
  15. 15.
    John, F.: Blow-up for quasilinear wave equations in three space dimensions. Commun. Pure Appl. Math. 34(1), 29–51 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pp. 293–326. Amer. Math. Soc., Providence, RI (1986)Google Scholar
  17. 17.
    Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity. Progress in Mathematical Physics, vol. 25. Birkhäuser Boston Inc., Boston (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kubo, H., Kubota, K.: Scattering for systems of semilinear wave equations with different speeds of propagation. Adv. Differ. Equ. 7(4), 441–468 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kubota, K.: Existence of a global solution to a semi-linear wave equation with initial data of noncompact support in low space dimensions. Hokkaido Math. J. 22(2), 123–180 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lindblad, H.: Global solutions of nonlinear wave equations. Commun. Pure Appl. Math. 45(9), 1063–1096 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lindblad, H.: Global solutions of quasilinear wave equations. Am. J. Math. 130(1), 115–157 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lindblad, H., Rodnianski, I.: The weak null condition for Einstein’s equations. C. R. Math. Acad. Sci. Paris 336(11), 901–906 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lindblad, H., Rodnianski, I.: The global stability of Minkowski space–time in harmonic gauge. Ann. Math. (2) 171(3), 1401–1477 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lindblad, Hans, Rodnianski, Igor: Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wald, R.: General Relativity. The University of Chicago press, Chicago (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CMLSEcole PolytechniquePalaiseauFrance

Personalised recommendations