Advertisement

Annals of PDE

, 4:7 | Cite as

A Two-Soliton with Transient Turbulent Regime for the Cubic Half-Wave Equation on the Real Line

  • Patrick Gérard
  • Enno Lenzmann
  • Oana Pocovnicu
  • Pierre Raphaël
Manuscript
  • 162 Downloads

Abstract

We consider the focusing cubic half-wave equation on the real line
$$\begin{aligned} i \partial _t u + |D| u = |u|^2 u, \ \ \widehat{|D|u}(\xi )=|\xi |\hat{u}(\xi ), \ \ (t,x)\in {\mathbb {R}}_+\times {\mathbb {R}}. \end{aligned}$$
We construct an asymptotic global-in-time compact two-soliton solution with arbitrarily small \(L^2\)-norm which exhibits the following two regimes: (i) a transient turbulent regime characterized by a dramatic and explicit growth of its \(H^1\)-norm on a finite time interval, followed by (ii) a saturation regime in which the \(H^1\)-norm remains stationary large forever in time.

Keywords

Multi-soliton modulation theory Wave turbulence Growth of Sobolev norms Half-wave equation Cubic Szegő equation 

Mathematics Subject Classification

35B40 35L05 35Q41 35Q51 37K40 

Notes

Acknowledgements

P.G. is supported by Grant ANAE of French ANR, and partially supported by the ERC-2014-CoG 646650 SingWave. E.L. is supported by the Swiss National Science Foundation (SNF) through Grant No. 200021-149233. O.P. was supported by the NSF grant under Agreement No. DMS-1128155 during the year 2013-2014 that she spent at the Institute for Advanced Study. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. P.R is supported by the ERC-2014-CoG 646650 SingWave and is a junior member of the Institut Universitaire de France. Part of this work was done while P.R was visiting the Mathematics Department at MIT, Boston, which he would like to thank for its kind hospitality. Another part was done while P.G., O.P., and P.R. were in residence at MSRI in Berkeley, California, during the Fall 2015 semester, and were supported by the NSF under Grant No. DMS-1440140.

References

  1. 1.
    Bourgain, J.: Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations. Geom. Funct. Anal. 5(2), 105–140 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bourgain, J.: On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE. Int. Math. Res. Not. 1996, 277–304 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bourgain, J.: On growth in time of Sobolev norms of smooth solutions of nonlinear Schrödinger equations in \({\mathbb{R}}^D\). J. Anal. Math. 72, 299–310 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bourgain, J.: Problems in Hamiltonian PDEs. Geom. Funct. Anal. Part I, 32–56 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bourgain, J.: Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations. Ergod. Theory Dyn. Syst. 24(5), 1331–1357 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, D., Majda, A., McLaughlin, D., Tabak, E.: Dispersive wave turbulence in one dimension. Physica D 152(153), 551–572 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181, 39–113 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Colliander, J., Kwon, S., Oh, T.: A remark on normal forms and the “upside-down” I-method for periodic NLS: growth of higher Sobolev norms. J. Anal. Math. 118(1), 55–82 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dodson, B.: Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state. Adv. Math. 285, 1589–1618 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Frank, R., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \({ R}\). Acta Math. 210, 261–318 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fröhlich, J., Lenzmann, E.: Blowup for nonlinear wave equations describing boson stars. Commun. Pure Appl. Math. 60(11), 1691–1705 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gérard, P., Grellier, S.: The cubic Szegő equation. Ann. Sci. Éc. Norm. Supér (4). 43(5), 761–810 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gérard, P., Grellier, S.: Invariant tori for the cubic Szegő equation. Invent. Math. 187, 707–754 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gérard, P., Grellier, S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5, 1139–1155 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gérard, P., Grellier, S.: An explicit formula for the cubic Szegő equation. Trans. Am. Math. Soc. 367, 2979–2995 (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators, Astérisque 389 (2017)Google Scholar
  18. 18.
    Guardia, M.: Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential. Commun. Math. Phys. 329(1), 405–434 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Guardia, M., Kaloshin, V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 71–149 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Guardia, M., Haus, E., Procesi, M.: Growth of Sobolev norms for the analytic NLS on \({\mathbb{T}}^2\). Adv. Math. 301, 615–692 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hani, Z.: Long-time strong instability and unbounded orbits for some periodic nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 211, 929–964 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hani, Z., Pausader, B., Tzvetkov, N., Visciglia, N.: Modified scattering for the cubic Schrödinger equations on product spaces and applications. In: Forum Mathematics, Pi, no. 3 (2015)Google Scholar
  23. 23.
    Haus, E., Procesi, M.: Growth of Sobolev norms for the quintic NLS on \({\mathbb{T}}^2\). Anal. PDE 8, 883–922 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kenig, C.E., Martel, Y., Robbiano, L.: Local well-posedness and blow-up in the energy space for a class of \(L^2\) critical dispersion generalized Benjamin-Ono equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(6), 853–887 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kirkpatrick, K., Lenzmann, E., Staffilani, G.: On the continuum limit for discrete NLS with long-range interactions. Commun. Math. Phys. 317, 563–591 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Krieger, J., Lenzmann, E., Raphaël, P.: Nondispersive solutions to the \(L^2\)-critical half-wave equation. Arch. Ration. Mech. Anal. 209(1), 61–129 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Krieger, J., Martel, Y., Raphaël, P.: Two solitons solution to the gravitational Hartree equation. Commun. Pure Appl. Math. 62(11), 1501–1550 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lindblad, H., Tao, T.: Asymptotic decay for a one-dimensional nonlinear wave equation. Anal. PDE 5(2), 411–422 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kuksin, S.B.: Oscillations in space-periodic nonlinear Schrödinger equations. Geom. Funct. Anal. 7(2), 338–363 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Majda, A., McLaughlin, A., Tabak, E.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7(1), 9–44 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Martel, Y.: Asymptotic \(N\)-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Am. J. Math. 127(5), 1103–1140 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Martel, Y., Merle, F.: Multi solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(6), 849–864 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Martel, Y., Merle, F.: Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. Math. (2) 155(1), 235–280 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Martel, Y., Merle, F.: Description of two soliton collision for the quartic gKdV equation. Ann. Math. (2) 174(2), 757–857 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Martel, Y., Merle, F.: Inelastic interaction of nearly equal solitons for the quartic gKdV equation. Invent. Math. 183(3), 563–648 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Martel, Y., Merle, F.: Construction of multi-solitons for the energy-critical wave equation in dimension 5. Arch. Ration. Mech. Anal. 222(3), 1113–1160 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical gKdV equation II: minimal mass blow up. J. Eur. Math. Soc. 17(8), 1855–1925 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Martel, Y., Raphaël P.: Strongly interacting blow up bubbles for the mass critical NLS. Ann. Ec. Norm. Sup. (2015). arXiv:1512.00900
  39. 39.
    Merle, F.: Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129(2), 223–240 (1990)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Merle, F., Raphaël, P., Szeftel, J.: On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation. Duke Math. J. 163(2), 369–431 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Mizumachi, T.: Weak interaction between solitary waves of the generalized KdV equations. SIAM J. Math. Anal. 35(4), 1042–1080 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Pocovnicu, O.: Traveling waves for the cubic Szegő equation on the real line. Anal. PDE 4–3, 379–404 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Pocovnicu, O.: Explicit formula for the solution of the Szegő equation on the real line and applications. Discrete Contin. Dyn. Syst. A 31(3), 607–649 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Pocovnicu, O.: First and second order approximations for a nonlinear wave equation. J. Dyn. Differ. Equ. 25(2), 305–333 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Pocovnicu, O.: Soliton interaction with small Toeplitz potentials for the Szegő equation on the real line. Dyn. Partial Differ. Equ. 9(1), 1–27 (2012). Erratum to “Soliton interaction with small Toeplitz potentials”, Dyn. Partial Differ. Equ. 9(2), 173–174 (2012)Google Scholar
  46. 46.
    Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Am. Math. Soc. 24(2), 471–546 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrödinger Equations on \({\cal{S}}^1\). Differ. Integral Equ. 24(7–8), 653–718 (2011)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrödinger Equations on \({\mathbb{R}}\). Indiana Univ. Math. J. 60(5), 1487–1516 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Staffilani, G.: On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations. Duke Math. J. 86, 109–142 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Thirouin, J.: On the growth of Sobolev norms of solutions of the fractional defocusing NLS on the circle. Ann. Inst. H. Poincaré, Anal. Non Linéaire 34, 509–531 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Xu, H.: Large time blow up for a perturbation of the cubic Szegő equation. Anal. PDE 7, 717–731 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Xu, H.: Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation. Math. Z. 286(1–2), 443489 (2017)Google Scholar
  53. 53.
    Zakharov, V., Guyenne, P., Pushkarev, A., Dias, F.: Wave turbulence in one-dimensional models. Physica D 152–153, 573–619 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Departement für Mathematik und InformatikUniversität BaselBaselSwitzerland
  3. 3.Department of MathematicsHeriot-Watt University and The Maxwell Institute for the Mathematical SciencesEdinburghUK
  4. 4.Laboratoire Jean-Alexandre DieudonnéUniversité Nice Sophia AntipolisNiceFrance

Personalised recommendations