Advertisement

Annals of PDE

, 3:8 | Cite as

On the Global Uniqueness for the Einstein–Maxwell-Scalar Field System with a Cosmological Constant: Part 3. Mass Inflation and Extendibility of the Solutions

  • João L. Costa
  • Pedro M. Girão
  • José Natário
  • Jorge Drumond Silva
Article

Abstract

This paper is the third part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant \(\Lambda \), with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development as a “suitably regular” Lorentzian manifold. In the first part [7] of this series we established the well posedness of the characteristic problem, whereas in the second part [8] we studied the stability of the radius function at the Cauchy horizon. In this third and final paper we show that, depending on the decay rate of the initial data, mass inflation may or may not occur. When the mass is controlled, it is possible to obtain continuous extensions of the metric across the Cauchy horizon with square integrable Christoffel symbols. Under slightly stronger conditions, we can bound the gradient of the scalar field. This allows the construction of (non-isometric) extensions of the maximal development which are classical solutions of the Einstein equations. Our results provide evidence against the validity of the strong cosmic censorship conjecture when \(\Lambda >0\).

Keywords

Einstein equations Black holes Strong cosmic censorship Cauchy horizon Scalar field Spherical symmetry 

Mathematics Subject Classification

Primary 83C05 Secondary 35Q76 83C22 83C57 83C75 

Notes

Acknowledgements

The authors thank M. Dafermos for bringing the Epilogue of [11] to their attention.

References

  1. 1.
    Brady, P., Moss, I., Myers, R.: Cosmic censorship: as strong as ever. Phys. Rev. Lett. 80, 3432–3435 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brady, P., Nunez, D., Sinha, S.: Cauchy horizon singularity without mass inflation. Phys. Rev. D 47, 4239–4243 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Brady, P., Poisson, E.: Cauchy horizon instability for Reissner–Nordstrom black holes in de Sitter space. Class. Quantum Grav. 9, 121–125 (1992)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Christodoulou, D.: On the global initial value problem and the issue of singularities. Class. Quantum Grav. 16 A, 23–35 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics (2009)Google Scholar
  6. 6.
    Chruściel, P.: On uniqueness in the large of solutions of Einstein’s equations (“strong cosmic censorship”), Proceedings of the Centre for Mathematical Analysis, Australian National University 27 (1991)Google Scholar
  7. 7.
    Costa, J., Girão, P., Natário, J., Silva, J.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 1. Well posedness and breakdown criterion. Class. Quantum Grav. 32, 015017 (2015)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Costa, J., Girão, P., Natário, J., Silva, J.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2. Structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339, 903–947 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dafermos, M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58, 445–504 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dafermos, M.: Black holes without spacelike singularities. Commun. Math. Phys. 332, 729–757 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dafermos, M., Rendall, A.: An extension principle for the Einstein–Vlasov system in spherical symmetry. Ann. Henri Poincaré 6, 1137–1155 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dafermos, M., Rendall, A.: Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Commun. Pure Appl. Math. 69, 815–908 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild-de Sitter spacetimes. arXiv:0709.2766 (2007)
  15. 15.
    Dyatlov, S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335, 1445–1485 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  17. 17.
    Hiscock, W.: Evolution of the interior of a charged black hole. Phys. Lett. A 83, 110–112 (1981)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Luk, J.: Weak null singularities in general relativity. arXiv:1311.4970 (2013)
  19. 19.
    Ori, A.: Inner structure of a charged black hole: an exact mass-inflation solution. Phys. Rev. Lett. 67, 789–792 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity, an Einstein Century Survey. Cambridge University Press, Cambridge (1979)Google Scholar
  21. 21.
    Poisson, E., Israel, W.: Inner-horizon instability and mass inflation in black holes. Phys. Rev. Lett. 63, 1663–1666 (1989)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Rendall, A.: On the nature of singularities in plane symmetric scalar field cosmologies. Gen. Rel. Grav. 27, 213–221 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sbierski, J.: The \(C^0\)-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry. arXiv:1507.00601 (2015)
  24. 24.
    Simpson, M., Penrose, R.: Internal instability in a Reissner–Nordstrom black hole. Int. J. Theor. Phys. 7, 183–197 (1973)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ISCTE - Instituto Universitário de LisboaLisbonPortugal
  2. 2.Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations