Advertisement

International Journal of Fuzzy Systems

, Volume 21, Issue 8, pp 2600–2608 | Cite as

Adaptive Fuzzy Tracking Control of Stochastic Mechanical System with Input Saturation

  • Wen-Xing Yuan
  • Wei SunEmail author
  • Zhen-Guo Liu
  • Feng-Xia Zhang
Article
  • 51 Downloads

Abstract

The issue of adaptive fuzzy tracking control for a category of nonlinear mechanical systems with random disturbances and input saturations is studied in this paper. In the design of the controller, non-differentiable saturation nonlinearity is replaced by a smooth hyperbolic tangent function, and unknown nonlinear functions are approximated using fuzzy systems. The designed adaptive fuzzy controller can ensure that all the states in the resulting closed-loop system are bounded in probability and the generalized position and velocity of the system can respectively track the desired target trajectory as much as possible. The effectiveness of the proposed control strategy is verified using simulation results.

Keywords

Adaptive fuzzy control Mechanical systems Random disturbances Input saturations 

Notes

Acknowledgements

The work was supported by National Natural Science Foundation of China under Grants 61603170, 61603231 and 11601210, Youth Science and Technology Research Foundation of the ShanXi Science and Technology Department of China under Grant 201801D221167, Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) under Grant 2019L0011.

References

  1. 1.
    Sun, W., Wu, Y.: Modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. J. Syst. Sci. Complex. 29(3), 589–601 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Yang, T., Sun, N., Chen, H., et al.: Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans. Neural Netw. Learn. Syst. (2019).  https://doi.org/10.1109/TNNLS.2019.2910580 CrossRefGoogle Scholar
  3. 3.
    Zhang, Z., Wu, Y., Huang, J.: Differential-flatness-based finite-time anti-swing control of underactuated crane systems. Nonlinear Dyn. 87(3), 1749–1761 (2017)CrossRefGoogle Scholar
  4. 4.
    Sun, N., Yang, T., Fang, Y., et al.: Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1408–1418 (2019)CrossRefGoogle Scholar
  5. 5.
    Sun, W., Su, S., Xia, J., et al.: Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2870642 CrossRefGoogle Scholar
  6. 6.
    Yan, Z., Lai, X., Meng, Q., et al.: A novel robust control method for motion control of uncertain single-link flexible-joint manipulator. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2900502 CrossRefGoogle Scholar
  7. 7.
    Sun, W., Su, S., Xia, J., et al.: Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. IEEE Trans. Cybern. (2018).  https://doi.org/10.1109/TCYB.2018.2884707 CrossRefGoogle Scholar
  8. 8.
    Ren, C., Du, T., Li, G., et al.: Disturbance observer-based consensus control for multiple robotic manipulators. IEEE Access 6, 51348–51354 (2018)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ren, C., Chen, L., Chen, C.L.P.: Adaptive fuzzy leader-following consensus control for stochastic multiagent systems with heterogeneous nonlinear dynamics. IEEE Trans. Fuzzy Syst. 25(1), 181–190 (2017)CrossRefGoogle Scholar
  11. 11.
    Xie, X., Jiang, M.: Dynamic state feedback stabilization of stochastic cascade nonlinear time-delay systems with SISS inverse dynamics. IEEE Trans. Autom. Control (2019).  https://doi.org/10.1109/TAC.2019.2910166 CrossRefGoogle Scholar
  12. 12.
    Sun, W., Su, S., Dong, G., et al.: Reduced adaptive fuzzy tracking control for high-order stochastic nonstrict feedback nonlinear system with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2898204 CrossRefGoogle Scholar
  13. 13.
    Liu, S., Zhang, J., Jiang, Z.: Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica 43(2), 238–251 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Xia, J., Zhang, J., Sun, W., et al.: Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1541–1548 (2019)CrossRefGoogle Scholar
  15. 15.
    Wu, Z., Cui, M., Shi, P.: Backstepping control in vector form for stochastic Hamiltonian systems. SIAM J. Control Optim. 50(2), 925–942 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cui, M., Wu, Z., Xie, X., et al.: Modeling and adaptive tracking for a class of stochastic Lagrangian control systems. Automatica 49(3), 770–779 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, Z., Wu, Y.: Modelling and adaptive tracking control for flexible joint robots with random noises. Int. J. Control 87(12), 2499–2510 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 7(3), 452–465 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sun, N., Liang, D., Wu, Y., et al.: Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints. IEEE Trans. Ind. Inf. (2019).  https://doi.org/10.1109/TII.2019.2923715 CrossRefGoogle Scholar
  20. 20.
    Liu, Z., Xue, L., et al.: Robust output feedback tracking control for a class of high-order time-delay nonlinear systems with input dead-zone and disturbances. Nonlinear Dyn. (2019).  https://doi.org/10.1007/s11071-019-05018-1 CrossRefGoogle Scholar
  21. 21.
    Xue, L., Liu, Z., Sun, Z., et al.: New results on robust tracking control for a class of high-order nonlinear time-delay systems. Int. J. Syst. Sci. (2019).  https://doi.org/10.1080/00207721.2019.1646346 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Du, P., Liang, H., Zhao, S., et al.: Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2918351 CrossRefGoogle Scholar
  23. 23.
    Zhou, Q., Wang, L., Wu, C., et al.: Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 1–12 (2017)CrossRefGoogle Scholar
  24. 24.
    Liang, H., Zhang, Y., Huang, T., et al.: Prescribed performance cooperative control for multi-agent systems with unknown control directions and input quantization. IEEE Trans. Cybern. (2019).  https://doi.org/10.1109/TCYB.2019.2893645 CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Li, H., Sun, J., et al.: Cooperative adaptive event-triggered control for multi-agent systems with actuator failures. IEEE Trans. Syst. Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2883907 CrossRefGoogle Scholar
  26. 26.
    Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO non-strict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96–110 (2019)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Meng, M., Lam, J., Feng, J., et al.: Exponential stability analysis and \(l_1\) synthesis of positive T-S fuzzy systems with time-varying delays. Nonlinear Anal. Hybrid Syst. 24, 186–197 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liang, X., Xia, J., Chen, G., et al.: Dissipativity-based sampled-data control for fuzzy Markovian jump systems. Appl. Math. Comput. 361(15), 552–564 (2019)MathSciNetGoogle Scholar
  29. 29.
    Sun, W., Yuan, W., Shao, Y., et al.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with full-state constraints. Int. J. Fuzzy Syst. 20(8), 2556–2565 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Niu, Y., Song, J., et al.: Input-to-state stabilization of interval type-2 fuzzy systems subject to cyber attacks: an observer-based adaptive sliding mode approach. IEEE Trans. Fuzzy Syst. (2019).  https://doi.org/10.1109/TFUZZ.2019.2902105 CrossRefGoogle Scholar
  31. 31.
    Zhao, X., Wang, X., Ma, L., et al.: Fuzzy-approximation-based asymptotic tracking control for a class of uncertain switched nonlinear systems. IEEE Trans. Fuzzy Syst. (2019).  https://doi.org/10.1109/TFUZZ.2019.2912138 CrossRefGoogle Scholar
  32. 32.
    Sun, W., Xia, J., Zhuang, G., et al.: Adaptive fuzzy asymptotically tracking control of full state constrained nonlinear system based on a novel Nussbaum-type function. J. Franklin Inst. 356, 1810–1827 (2019)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xia, J., Zhang, J., Feng, J., et al.: Command filter-based adaptive fuzzy control for nonlinear systems with unknown control directions. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2911115 CrossRefGoogle Scholar
  34. 34.
    Ma, H., Li, H., Liang, H., et al.: Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans. Fuzzy Syst. (2019).  https://doi.org/10.1109/TFUZZ.2019.2896843 CrossRefGoogle Scholar
  35. 35.
    Cao, L., Zhou, Q., Dong, G., et al.: Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures. IEEE Trans. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2895858 CrossRefGoogle Scholar
  36. 36.
    Zhang, Z., Liang, H., Wu, C., et al.: Adaptive even-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and random actuator failure. IEEE Trans. Fuzzy Syst. (2019).  https://doi.org/10.1109/TFUZZ.2019.2891236 CrossRefGoogle Scholar
  37. 37.
    Sun, W., Su, S., Wu, Y., et al.: Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. (2019).  https://doi.org/10.1109/TCYB.2018.2890256 CrossRefGoogle Scholar
  38. 38.
    Wang, L., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)CrossRefGoogle Scholar
  39. 39.
    Wen, C., Zhou, J., Liu, Z., et al.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhang, L., et al., Liang, H., Sun, Y., et al.: Adaptive event-triggered fault detection scheme for semi-Markovian jump systems with output quantization. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2912846 CrossRefGoogle Scholar
  41. 41.
    Liang, H., et al., Zhang, Z., Ahn, C.K.: Event-triggered fault detection and isolation of discrete-time systems based on geometric technique. IEEE Trans. Circuits Syst. II Express Briefs (2019).  https://doi.org/10.1109/TCSII.2019.2907706 CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.School of Mathematics ScienceLiaocheng UniversityLiaochengChina
  2. 2.Department of AutomationShanxi UniversityTaiyuanChina

Personalised recommendations