Advertisement

International Journal of Fuzzy Systems

, Volume 21, Issue 8, pp 2679–2693 | Cite as

Fuzzy Model Identification and Self Learning with Smooth Compositions

  • Ebrahim Navid SadjadiEmail author
  • Jesus Garcia
  • Jose Manuel Molina Lopez
  • Akbar Hashemi Borzabadi
  • Monireh Asadi Abchouyeh
Article
  • 30 Downloads

Abstract

This paper develops a smooth model identification and self-learning strategy for dynamic systems taking into account possible parameter variations and uncertainties. We have tried to solve the problem such that the model follows the changes and variations in the system on a continuous and smooth surface. Running the model to adaptively gain the optimum values of the parameters on a smooth surface would facilitate further improvements in the application of other derivative based optimization control algorithms such as MPC or robust control algorithms to achieve a combined modeling-control scheme. Compared to the earlier works on the smooth fuzzy modeling structures, we could reach a desired trade-off between the model optimality and the computational load. The proposed method has been evaluated on a test problem as well as the non-linear dynamic of a chemical process.

Keywords

Fuzzy control Fuzzy IF–THEN systems (TSK) Smooth compositions 

Notes

Funding

This publication was supported in part by project MINECO, TEC2017-88048-C2-2-R.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there exists no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Salehfar, H., Bengiamin, N., Huang, J.: A systematic approach to linguistic fuzzy modeling based on input-output data. In: Proceedings of the 2000 winter simulation conference (2000)Google Scholar
  2. 2.
    Peeva, K., Kyosev, Y.: Fuzzy relational calculus: theory, applications and software. Advances in fuzzy systems-applications and theory, vol. 22. World Scientific Publishing Co., Pte. Ltd., Singapore (2004)zbMATHGoogle Scholar
  3. 3.
    Campello, R.J.G.B., Amaral, W.C.: Modeling and linguistic knowledge extraction from systems using fuzzy relational models. Fuzzy Sets Syst. 121, 113–126 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kreinovich, V., Nguyen, H.T., Yam, Y.: Fuzzy systems are universal approximators for a smooth function and its derivatives. Int. J. Intell. Syst. 15(6), 565–574 (1999)CrossRefGoogle Scholar
  5. 5.
    Sadjadi, N., Herrero, J., Molina, J., Hatami, Z.: On the approximation properties of smooth fuzzy models. Int. J. Fuzzy Syst. (2018).  https://doi.org/10.1007/s40815-018-0500-9 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Babuska, R.:, Fuzzy modeling and identification. Ph.D. Thesis, Delft University of Technology, Department of Electrical Engineering, Delft, The Netherlands (1997)Google Scholar
  7. 7.
    Wu, D., Mendel, J.M.: On the continuity of type-1 and interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 19(1), 179–192 (2011)CrossRefGoogle Scholar
  8. 8.
    Courant, R., John, F.: Introduction to Calculus and Analysis, vol. II/1. Springer, New York (1999)CrossRefGoogle Scholar
  9. 9.
    Šostak, A.P.: On a fuzzy topological structure (English). In: Frolík, Z., Souček, V., Vinárek, J. (eds.) Proceedings of the 13th winter school on abstract analysis. Section of Topology. Circolo Matematico di Palermo, Palermo, 89–103 (1985)Google Scholar
  10. 10.
    Ramadan, A.A., Abbas, S.E., Kim, Y.C.: Fuzzy irresolute mappings in smooth fuzzy topological spaces. J. Fuzzy Math. 9, 865–877 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Amudhambigai, B., Uma, M.K., Roja, E., Nadu, T.: m*-Fuzzy basically disconnected spaces in smooth fuzzy topological spaces. Mathematica Bohemica 138(1), 1–13 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Amudhambigai, B., Uma, M.K., Roja, E.: Pairwise r-Fuzzy b-Open sets in smooth fuzzy bitopological spaces. Int. J. Math. Sci. Appl. 2(2), 663–671 (2012)Google Scholar
  13. 13.
    Amudhambigai, B., Uma, M.K., Roja, E.: Separations axioms in smooth fuzzy topological spaces. Scientia Magna 5, 90–98 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Peeters, W.: Subspaces of smooth fuzzy topologies and initial smooth fuzzy structures. Fuzzy Sets Syst. 104, 423–433 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sadjadi, E.N.: Discussion on accuracy of approximation with smooth fuzzy models, Under ReviewGoogle Scholar
  16. 16.
    Sadjadi, E.N.: Sufficient conditions for the stability of smooth fuzzy systems, Under ReviewGoogle Scholar
  17. 17.
    Sadjadi, E.N.: On the monotonicity of smooth fuzzy systems, Under ReviewGoogle Scholar
  18. 18.
    Kandiah, S.: Fuzzy model based predictive control of chemical processes. Ph.D. Thesis, University of Sheffield, Sheffield (1996)Google Scholar
  19. 19.
    Campello, R.J.G.B., Amaral, W.C.: Hierarchical fuzzy relational models: linguistic interpretation and universal approximation. IEEE Trans. Fuzzy Syst. 14(3), 446–453 (2006)CrossRefGoogle Scholar
  20. 20.
    Castellano, G., Fanelli, A.M., Mencar, C.: A neuro-fuzzy network to generate human-understandable knowledge from data. Cogn. Syst. Res. J. 3(2), 125–144 (2002)CrossRefGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy Sets, Information and Control, vol. 8, pp. 338–353. Springer, Cham (1965)zbMATHGoogle Scholar
  22. 22.
    Prakash, J., Srinivasan, K.: Design of Nonlinear PID Controller and Nonlinear Model Predictive Controller for a Continuous Stirred Tank Reactor. ISA Transactions, Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  23. 23.
    Todorov, Y., Terzyiska, M., Petrov, M.: Recurrent Fuzzy-Neural Network with Fast Learning Algorithm for Predictive Control, Lecture Notes in Computer Science book series, M. Ladenov et al. (eds.), LNCS 8131, 459–466, Springer, New York (2013)Google Scholar
  24. 24.
    Fuller, R.: Fuzzy reasoning and fuzzy optimization: Turku Centre for Computer Science, available on line (1998)Google Scholar
  25. 25.
    Oviedo, E., Jairo, J., Vandewalle, J.P.L., Wertz, V.: Fuzzy Logic, Identification and Predictive Control. Springer, London (2005)zbMATHGoogle Scholar
  26. 26.
    Sadjadi, E.N.: Structural properties of time varying smooth fuzzy models for identification, Under ReviewGoogle Scholar
  27. 27.
    Sadjadi, N., Herrero, J., Molina, J., Menhaj, M.B.: How effective are smooth compositions in predictive control of TS fuzzy models. Int J Fuzzy Syst. (2019).  https://doi.org/10.1007/s40815-019-00676-0 MathSciNetCrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  • Ebrahim Navid Sadjadi
    • 1
    Email author
  • Jesus Garcia
    • 1
  • Jose Manuel Molina Lopez
    • 1
  • Akbar Hashemi Borzabadi
    • 2
  • Monireh Asadi Abchouyeh
    • 3
  1. 1.Universidad Carlos IIIMadridSpain
  2. 2.Department of Applied MathematicsUniversity of Science and Technology of MazandaranBehshahrIran
  3. 3.Department of Electrical Engineering, Dolatabad BranchIslamic Azad UniversityIsfahanIran

Personalised recommendations