Advertisement

International Journal of Fuzzy Systems

, Volume 21, Issue 6, pp 1786–1800 | Cite as

Cross Entropy for Discrete Z-numbers and Its Application in Multi-Criteria Decision-Making

  • Dong Qiao
  • Xiao-kang Wang
  • Jian-qiang Wang
  • Ke ChenEmail author
Article
  • 140 Downloads

Abstract

Decisions are based on information, and the reliability of information affects the quality of decision-making. Z-number, produced by Zadeh, considers the fuzzy restriction and the reliability restriction of decision information simultaneously. Many scholars have conducted in-depth research on Z-number, and the concept has great application potential in the field of economic management. However, certain problems with the basic operations of Z-number still exist. Entropy is a measure of information uncertainty, and research on entropy and Z-number continues to be rare. This study initially defines the cross entropy of fuzzy restriction and that of the reliability of Z-numbers. On this basis, a comprehensive weighted cross entropy is constructed, which is used to compare two discrete Z-numbers from the perspective of information entropy. Furthermore, one extended Technique for Order Preference by Similarity to Ideal Solution approach is developed to solve a multi-criteria decision-making problem under discrete Z-context. An example of the ranking of job candidates for human resource management is then presented to illustrate the availability of the proposed method along with the sensitivity and comparative analyses for verifying the validity and applicability of the proposed method.

Keywords

Z-number Cross entropy Maximum entropy method TOPSIS Performance evaluation 

Notes

Acknowledgements

The authors would like to acknowledge the editors and anonymous referees for their valuable and constructive comments and suggestions that immensely facilitated the improvement of this paper. This work was supported by the National Natural Science Foundation of China (No. 71871228).

References

  1. 1.
    Liang, R., Wang, J.: A linguistic intuitionistic cloud decision support model with sentiment analysis for product selection in E-commerce. Int. J. Fuzzy Syst. 21(3), 963–977 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhou, H., Wang, J., Zhang, H.: Stochastic multicriteria decision-making approach based on SMAA-ELECTRE with extended gray numbers. Int. Trans. Oper. Res. 26(5), 2032–2052 (2019)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Peng, H-g, Shen, K-w, He, S-s, Zhang, H-y, Wang, J-q: Investment risk evaluation for new energy resources: an integrated decision support model based on regret theory and ELECTRE III. Energy Convers. Manag. 183, 332–348 (2019)CrossRefGoogle Scholar
  4. 4.
    Ji, P., Zhang, H., Wang, J.: A fuzzy decision support model with sentiment analysis for items comparison in e-commerce: the case study of pconline.com. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2875163 CrossRefGoogle Scholar
  5. 5.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)zbMATHCrossRefGoogle Scholar
  6. 6.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Smarandache, F.: Neutrosophic logic—generalization of the intuitionistic fuzzy logic. In: Extractive Metallurgy of Nickel Cobalt & Platinum Group Metals, vol. 269, no. 51, pp. 49–53 (2010)Google Scholar
  8. 8.
    Tian, Z-p, Wang, J., Wang, J-q, Zhang, H-y: Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis. Negot. 26(3), 597–627 (2017)CrossRefGoogle Scholar
  9. 9.
    Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)zbMATHGoogle Scholar
  10. 10.
    Cuong, B.C., Kreinovich, V.: Picture fuzzy sets—a new concept for computational intelligence problems. In: 2013 Third World Congress on Information and Communication Technologies (WICT 2013), pp. 1–6 (2013)Google Scholar
  11. 11.
    Aliev, R.A., Alizadeh, A.V., Huseynov, O.H.: The arithmetic of discrete Z-numbers. Inf. Sci. 290(C), 134–155 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Qiao, D., Shen, K., Wang, J., Wang, T.: Multi-criteria PROMETHEE method based on possibility degree with Z-numbers under uncertain linguistic environment. J. Ambient Intell. Humaniz. Comput. (2019).  https://doi.org/10.1007/s12652-019-01251-z CrossRefGoogle Scholar
  13. 13.
    Shen, K-w, Wang, J-q: Z-VIKOR method based on a new weighted comprehensive distance measure of Z-number and its application. IEEE Trans. Fuzzy Syst. 26(6), 3232–3245 (2018)CrossRefGoogle Scholar
  14. 14.
    Aliev, R.A., Huseynov, O.H., Zeinalova, L.M.: The arithmetic of continuous Z-numbers. Inf. Sci. 373(C), 441–460 (2016)CrossRefGoogle Scholar
  15. 15.
    Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12(4), 1267–1278 (2012)CrossRefGoogle Scholar
  16. 16.
    Zadeh, L.A.: A note on Z-numbers. Inf. Sci. 181(14), 2923–2932 (2011)zbMATHCrossRefGoogle Scholar
  17. 17.
    Yager, R.R.: On Z-valuations using Zadeh’s Z-numbers. Int. J. Intell. Syst. 27(3), 259–278 (2012)CrossRefGoogle Scholar
  18. 18.
    Aliev, R.A., Pedrycz, W., Huseynov, O.H., Eyupoglu, S.Z.: Approximate reasoning on a basis of Z-number valued If-Then rules. IEEE Trans. Fuzzy Syst. 25(6), 1589–1600 (2017)CrossRefGoogle Scholar
  19. 19.
    Shen, K-w, Wang, X-k, Wang, J-q: Multi-criteria decision-making method based on Smallest Enclosing Circle in incompletely reliable information environment. Comput. Ind. Eng. 130, 1–13 (2019)CrossRefGoogle Scholar
  20. 20.
    Aliev, R.R., Huseynov, O.H., Aliyeva, K.R.: Z-valued T-norm and T-conorm operators-based aggregation of partially reliable Information. Procedia Comput. Sci. 102, 12–17 (2016)CrossRefGoogle Scholar
  21. 21.
    Peng, H-g, Wang, X-k, Wang, T-l, Wang, J-q: Multi-criteria game model based on the pairwise comparisons of strategies with Z-numbers. Appl. Soft Comput. 74, 451–465 (2019)CrossRefGoogle Scholar
  22. 22.
    Peng, H-g, Wang, J-q: A multicriteria group decision-making method based on the normal cloud model With Zadeh’s Z-numbers. IEEE Trans Fuzzy Syst. 26(6), 3246–3260 (2018)CrossRefGoogle Scholar
  23. 23.
    Shen, K-w, Wang, J-q, Wang, T-l: The arithmetic of multidimensional Z-number. J. Intell. Fuzzy Syst. 36(2), 1647–1661 (2019)CrossRefGoogle Scholar
  24. 24.
    Kang, B., Deng, Y., Hewage, K., Sadiq, R.: Generating Z-number based on OWA weights using maximum entropy. Int. J. Intell. Syst. 33(8), 1745–1755 (2018)CrossRefGoogle Scholar
  25. 25.
    Kang, B., Wei, D., Li, Y., Deng, Y.: Decision making using Z-numbers under uncertain environment. J. Comput. Inf. Syst. 8(7), 2807–2814 (2012)Google Scholar
  26. 26.
    Jiang, W., Xie, C., Luo, Y., Tang, Y.: Ranking Z-numbers with an improved ranking method for generalized fuzzy numbers. J. Intell. Fuzzy Syst. 32(3), 1931–1943 (2017)zbMATHCrossRefGoogle Scholar
  27. 27.
    Kang, B., Deng, Y., Sadiq, R.: Total utility of Z-number. Appl. Intell. 48(3), 703–729 (2018)CrossRefGoogle Scholar
  28. 28.
    Kang, B., Wei, D., Li, Y., Deng, Y.: A method of converting Z-number to classical fuzzy number. J. Inf. Comput. Sci. 9(3), 703–709 (2012)Google Scholar
  29. 29.
    Yaakob, A.M., Gegov, A.: Interactive TOPSIS based group decision making methodology using Z-numbers. Int. J. Comput. Intell. Syst. 9(2), 311–324 (2016)CrossRefGoogle Scholar
  30. 30.
    Aboutorab, H., Saberi, M., Asadabadi, M.R., Hussain, O., Chang, E.: ZBWM: the Z-number extension of best worst method and its application for supplier development. Expert Syst. Appl. 107, 115–125 (2018)CrossRefGoogle Scholar
  31. 31.
    Kang, B., Chhipi-Shrestha, G., Deng, Y., Hewage, K., Sadiq, R.: Stable strategies analysis based on the utility of Z-number in the evolutionary games. Appl. Math. Comput. 324, 202–217 (2018)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Aliyev, R.R.: Multi-attribute decision making based on Z-valuation. Procedia Comput. Sci. 102(C), 218–222 (2016)CrossRefGoogle Scholar
  33. 33.
    Yang, Y., Wang, J.: SMAA-based model for decision aiding using regret theory in discrete Z-number context. Appl. Soft Comput. 65, 590–602 (2018)CrossRefGoogle Scholar
  34. 34.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Zadeh, L.A.: Probability measures of Fuzzy events. J. Math. Anal. Appl. 23(2), 421–427 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Shang, X-g, Jiang, W-s: A note on fuzzy information measures. Pattern Recognit. Lett. 18(5), 425–432 (1997)CrossRefGoogle Scholar
  38. 38.
    Wei, G-w: Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 17(4), 491–502 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Tian, Z-p, Zhang, H-y, Wang, J., Wang, J-q, Chen, X-h: Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int J. Syst. Sci. 47(15), 3598–3608 (2016)zbMATHCrossRefGoogle Scholar
  40. 40.
    Wu, X., Wang, J., Peng, J., Chen, X.: Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 18(6), 1104–1116 (2016)CrossRefGoogle Scholar
  41. 41.
    Kang, B., Deng, Y., Hewage, K., Sadiq, R.: A method of measuring uncertainty for Z-number. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2868496 CrossRefGoogle Scholar
  42. 42.
    Casasnovas, J., Riera, J.V.: On the addition of discrete fuzzy numbers. In: Proceedings of the 5th WSEAS international conference on Telecommunications and informatics, World Scientific and Engineering Academy and Society (WSEAS), Istanbul, pp. 432–437 (2006)Google Scholar
  43. 43.
    Casasnovas, J., Riera, J.V.: Weighted means of subjective evaluations. In: Seising, R., Sanz González, V. (eds.) Soft Computing in Humanities and Social Sciences, pp. 323–345. Springer, Berlin (2012)CrossRefGoogle Scholar
  44. 44.
    Voxman, W.: Canonical representations of discrete fuzzy numbers. Fuzzy Sets Syst. 118(3), 457–466 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Wang, G., Wu, C., Zhao, C.: Representation and operations of discrete fuzzy numbers. Southeast Asian Bull. Math. 29(5), 1003–1010 (2005)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Kullback, S.: Information theory and statistics. Wiley, New York (1959)zbMATHGoogle Scholar
  47. 47.
    Shore, J., Johnson, R.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 26(1), 26–37 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Hwang, C.L., Yoon, K.: Multiple attribute decision making. Springer, Berlin (1981)zbMATHCrossRefGoogle Scholar
  49. 49.
    Yoon, K.P., Kim, W.K.: The behavioral TOPSIS. Expert Syst. Appl. 89, 266–272 (2017)CrossRefGoogle Scholar
  50. 50.
    Sun, G., Guan, X., Yi, X., Zhou, Z.: An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications. Appl. Soft Comput. 68, 249–267 (2018)CrossRefGoogle Scholar
  51. 51.
    Wang, X., Wang, J., Zhang, H.: Distance-based multicriteria group decision-making approach with probabilistic linguistic term sets. Expert Syst. 36, e12352 (2019)CrossRefGoogle Scholar
  52. 52.
    Zhao, S., Du, J.: Thirty-two years of development of human resource management in China: review and prospects. Hum Resour Manag Rev. 22(3), 179–188 (2012)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Siyambalapitiya, J., Zhang, X., Liu, X.: Green human resource management: a proposed model in the context of Sri Lanka’s tourism industry. J. Clean. Prod. (2018).  https://doi.org/10.1016/j.jclepro.2018.07.305 CrossRefGoogle Scholar
  54. 54.
    Dong, Y., Liu, Y., Liang, H., Chiclana, F., Herrera-Viedma, E.: Strategic weight manipulation in multiple attribute decision making. Omega 75, 154–164 (2018)CrossRefGoogle Scholar
  55. 55.
    Liu, Y., Dong, Y., Liang, H., Chiclana, F., Herrera-Viedma, E.: Multiple attribute strategic weight manipulation with minimum cost in a group decision making context with interval attribute weights information. IEEE Trans. Syst Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2874942 CrossRefGoogle Scholar
  56. 56.
    Dong, Y., Zhao, S., Zhang, H., Chiclana, F., Herrera-Viedma, E.: A self-management mechanism for non-cooperative behaviors in large-scale group consensus reaching processes. IEEE Trans. Fuzzy Syst. 26(6), 3276–3288 (2018)CrossRefGoogle Scholar
  57. 57.
    Zhang, X., Zhang, H., Wang, J.: Discussing incomplete 2-tuple fuzzy linguistic preference relations in multi-granular linguistic MCGDM with unknown weight information. Soft. Comput. 23(6), 2015–2032 (2019)zbMATHCrossRefGoogle Scholar
  58. 58.
    Zhang, H., Dong, Y., Herrera-Viedma, E.: Consensus building for the heterogeneous large-scale GDM with the individual concerns and satisfactions. IEEE Trans. Fuzzy Syst. 26(2), 884–898 (2018)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  • Dong Qiao
    • 1
  • Xiao-kang Wang
    • 1
  • Jian-qiang Wang
    • 1
  • Ke Chen
    • 1
    Email author
  1. 1.School of BusinessCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations