Advertisement

Exponentially Weighted Moving Average Control Chart Based on Normal Fuzzy Random Variables

  • Gholamreza HesamianEmail author
  • Mohammad Ghasem Akbari
  • Elham Ranjbar
Article
  • 1 Downloads

Abstract

Exponentially weighted moving average (EWMA) chart is an alternative to Shewhart control charts and can serve as an effective tool for detection of shifts in small persistent process. Notably, existing methods rely on induced imprecise observations of a normal distribution with fuzzy mean and variance. Such techniques did not investigate the statistical properties relevant to a fuzzy EWMA. To overcome this shortcoming, employing a common notion of normal fuzzy random variable with fuzzy mean and non-fuzzy variance could be helpful. This paper first developed a notion of fuzzy EWMA statistic as a natural extension to the classical counterpart. Then, the concept of fuzzy EWMA control limit was introduced and discussed in cases where fuzzy mean and/or non-fuzzy variance was unknown parameters. A degree of violence was also employed to monitor the proposed fuzzy EWMA control chart. Potential applications of the proposed fuzzy EWMA chart were also demonstrated based on a real-life example. The advantages of the proposed method were also discussed in comparison with other existing fuzzy EWMA methods.

Keywords

Normal fuzzy random variable Fuzzy EWMA statistic Fuzzy EWMA chart Consistent estimator Violence degree 

References

  1. 1.
    Ban, A., Brandas, A., Coroianu, L., Negruiu, C., Nica, O.: Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value. Comput. Math. Appl. 61, 1379–1401 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Billingsley, P.: Probability and Measure. Wiley, New York (1979)zbMATHGoogle Scholar
  3. 3.
    Bosc, P., Pivert, O.: About approximate inclusion and its axiomatization. Fuzzy Sets Syst. 157, 1438–1454 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cynthia, A., Lowry, W.H., Woodall, C.W.C., Steven, E.R.: A multivariate exponentially weighted moving average control chart. Technometrics 34, 46–53 (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  6. 6.
    Erginel, N., Senturk, S.: Fuzzy EWMA and Fuzzy CUSUM Control Charts. Fuzzy Statistical Decision-Making, pp. 281–295. Springer, Berlin (2016)zbMATHGoogle Scholar
  7. 7.
    Faraz, A., Shapiro, A.: An application of fuzzy random variables to control charts. Fuzzy Sets Syst. 161, 2684–2694 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Feron, R.: Ensembles al\(\acute{e}\)atoires flous. C. R. Acad. Sci. Paris 282, 903–906 (1976)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gil, M.A., López-Díaz, M., Ralescu, D.A.: Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 157, 2546–2557 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hesamian, G., Akbari, M.G., Yaghoobpoor, R.: Quality control process based on fuzzy random variables. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2866811 Google Scholar
  11. 11.
    Hesamian, G., Shams, M.: Parametric testing statistical hypotheses for fuzzy random variables. Soft Comput. 20, 1537–1548 (2016)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kruse, R., Meyer, K.D.: Statistics with Vague Data. Reidel, Amsterdam (1987)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kwakernaak, H.: Fuzzy random variables. Part I: definitions and theorems. Inf. Sci. 19, 1–15 (1978)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kwakernaak, H.: Fuzzy random variables. Part II: algorithms and examples for the discrete case. Inf. Sci. 17, 253–278 (1979)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lee, K.H.: First Course on Fuzzy Theory and Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  16. 16.
    Liu, Y.K., Liu, B.: Fuzzy random variables: a scalar expected value operator. Fuzzy Optim. Decis. Mak. 2, 143–160 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Montgomery, D.C.: Introduction to Statistical Quality Control, 7th edn. Wiley, New York (2009)zbMATHGoogle Scholar
  18. 18.
    Nasir, A., Riaz, M., Does, R.J.M.M.: An EWMA-type control chart for monitoring the process mean using auxiliary information. Commun. Stat. Theory Methods 43, 3485–3498 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Puri, M.L., Ralescu, D.A.: The concept of normality for fuzzy random variables. Ann. Probab. 13, 1373–1379 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Roberts, S.W.: Control chart tests based on geometric moving averages. Technometrics 1, 239–250 (1959)CrossRefGoogle Scholar
  22. 22.
    Senturk, S., Erginel, N., Kaya, I., Kahraman, C.: Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. Appl. Soft Comput. 22, 1–10 (2014)CrossRefGoogle Scholar
  23. 23.
    Shapiro, F.A.: Fuzzy random variables. Insur. J. Math. Econ. 44, 307–314 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shu, H.M., Nguyen, T.L., Hsu, B.M.: Fuzzy MaxGWMA chart for identifying abnormal variations of on-line manufacturing processes with imprecise information. Expert Syst. Appl. 41, 1342–1356 (2013)CrossRefGoogle Scholar
  25. 25.
    The Math-Works Inc.: MATLAB, The Language of Technical Computing. The Math-Works Inc., Natick (2009)Google Scholar
  26. 26.
    Wang, Y., Gao, Y., Karimi, H.R., Shen, H., Fang, Z.: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Syst. Man Cybern. 48, 1667–1675 (2018)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Karimi, H.R., Lam, H., Shen, H.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2852281 Google Scholar
  28. 28.
    Wang, Y., Karimi, H.R., Shen, H., Fang, Z., Liu, M.: Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern. (2018).  https://doi.org/10.1109/TCYB.2018.2842920 Google Scholar
  29. 29.
    Young, V.: Fuzzy subsethood. Fuzzy Sets Syst. 77, 371–384 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–356 (1965)CrossRefzbMATHGoogle Scholar
  31. 31.
    Zavvar Sabegha, M.H., Mirzazadeha, A., Salehiana, S., Weber, G.W.: A literature review on the fuzzy control chart; classifications and analysis. Int. J. Supply Oper. Manag. 1, 167–189 (2014)Google Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  • Gholamreza Hesamian
    • 1
    Email author
  • Mohammad Ghasem Akbari
    • 2
  • Elham Ranjbar
    • 2
  1. 1.Department of StatisticsPayame Noor UniversityTehranIran
  2. 2.Department of Mathematical SciencesUniversity of BirjandBirjandIran

Personalised recommendations