International Journal of Fuzzy Systems

, Volume 21, Issue 2, pp 503–517 | Cite as

Backstepping-Based Distributed Finite-Time Coordinated Tracking Control for Multiple Uncertain Euler–Lagrange Systems

  • Yanchao Sun
  • Dingran Dong
  • Hongde QinEmail author


Based on the backstepping control theory, this paper investigates the distributed finite-time coordinated tracking control for Euler–Lagrange systems under directed graphs. We consider that only a portion of followers can receive information from the dynamic leader. Two cases are discussed in this paper: (1) the system having parameter uncertainties which can be linearized, and (2) the system having structured uncertainties and external disturbances which cannot be linearized. For the first case, parameter-linearity property is used to approximate the parametric uncertainties. For the second case, neural networks are used to approximate the nonlinear uncertainties and external disturbances. For the controller design, first, we design an auxiliary variable. Then, backstepping method and Lyapunov stability theory are used to prove that the tracking errors and adaptive estimation errors are bounded. Finally, the finite-time convergence property of the tracking errors is proved by increasing control gains. Numerical examples and comparisons with other methods are provided to show the effectiveness and superiorities of the proposed methods.


Multiple Euler–Lagrange systems Coordinated tracking control Distributed control Backstepping control Finite-time control 



This work was supported by the National Natural Science Foundation of China, under Grant (Nos. U1713205 and 61803119).


  1. 1.
    Wang, L., Wang, Z., Han, Q.L., Wei, G.: Synchronization control for a class of discrete-time dynamical networks with packet dropouts: a coding–decoding-based approach. IEEE Trans Cybern (2017). Google Scholar
  2. 2.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)CrossRefGoogle Scholar
  3. 3.
    Ren, W.: Distributed leaderless consensus algorithms for networked Euler–Lagrange systems. Int. J. Control 82(11), 2137–2149 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yu, H., Xia, X.H.: Adaptive leaderless consensus of agents in jointly connected networks. Neurocomputing 241, 64–70 (2017)CrossRefGoogle Scholar
  5. 5.
    Lui, W., Zhou, S.L., Qi, Y.H., Wu, X.Z.: Leaderless consensus of multi-agent systems with Lipschitz nonlinear dynamics and switching topologies. Neurocomputing 173(3), 1322–1329 (2016)Google Scholar
  6. 6.
    Cai, H., Huang, J.: The leader-following attitude control of multiple rigid spacecraft systems. Automatica 50(4), 1109–1115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhao, Z.Y., Lin, Z.L.: Global leader-following consensus of a group of general linear systems using bounded controls. Automatica 68, 294–304 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feng, Z., Hu, G.Q., Wen, G.H.: Distributed consensus tracking for multi-agent systems under two types of attacks. Int. J. Robust Nonlinear Control 26(5), 896–918 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, W., Huang, J.S., Wen, C.Y., Fan, H.J.: Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica 50(4), 1254–1263 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. 26(2), 869–883 (2018)CrossRefGoogle Scholar
  12. 12.
    Yu, S.H., Yu, X.H., Shirinzadeh, B., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lu, K.F., Xia, Y.Q., Zhu, Z., Basin, M.V.: Sliding mode attitude tracking of rigid spacecraft with disturbances. J. Franklin Inst. 349(2), 413–440 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, N., Su, S.F., Han, M., Chen, W.H.: Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns. IEEE Trans. Syst. Man Cybern. Syst. (2018). Google Scholar
  15. 15.
    Wang, N., Su, S.F., Yin, J., Zheng, Z.J., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)CrossRefGoogle Scholar
  16. 16.
    Wang, N., Sun, Z., Yin, J., Su, S.F., Sharma, S.: Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances. IEEE Access 6, 14059–14070 (2018)CrossRefGoogle Scholar
  17. 17.
    Feng, Z., Hu, G.Q., Ren, W., Dixon, W.E., Mei, J.: Distributed coordination of multiple unknown Euler–Lagrange systems. IEEE Trans. Control Netw. Syst. (2016). zbMATHGoogle Scholar
  18. 18.
    Klotz, J.R., Kan, Z., Shea, J.M., Pasiliao, E.L., Dixon, W.E.: Asymptotic synchronization of a leader-follower network of uncertain Euler–Lagrange systems. IEEE Trans. Control Netw. Syst. 2(2), 174–182 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dong, W.J.: On consensus algorithms of multiple uncertain mechanical systems with a reference trajectory. Automatica 47(9), 2023–2028 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lu, M.B., Liu, L.: Leader-following consensus of multiple uncertain Euler–Lagrange systems subject to communication delays and switching networks. IEEE Trans. Autom. Control (2017). MathSciNetzbMATHGoogle Scholar
  21. 21.
    Chen, G., Yue, Y.L., Song, Y.D.: Finite-time cooperative-tracking control for networked Euler–Lagrange systems. IET Control Theory Appl. 7(11), 1487–1497 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, N., Lv, S.L., Zhang, W.D., Liu, Z.Z., Er, M.J.: Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns. Ocean Eng. 145, 406–415 (2017)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y., Duan, Z.S., Wen, G.H.: Distributed finite-time tracking of multiple Euler–Lagrange systems without velocity measurements. Int. J. Robust Nonlinear Control 25(11), 1688–1703 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst. Control Lett. 59(9), 522–529 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sun, Y.C., Ma, G.F., Liu, M.M., Li, C.J., Ling, J.B.: Distributed finite-time coordinated control for multi-robot systems. Trans. Inst. Meas. Control (2017). Google Scholar
  26. 26.
    Sun, Y.C., Ma, G.F., Liu, M.M., Chen, L.M.: Distributed finite-time configuration containment control for satellite formation. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 231(9), 1609–1620 (2017)CrossRefGoogle Scholar
  27. 27.
    Wang, N., Sun, J.C., Han, M., Zheng, Z.J., Er, M.J.: Adaptive approximation-based regulation control for a class of uncertain nonlinear systems without feedback linearizability. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–14 (2017)Google Scholar
  28. 28.
    Wang, N., Sun, Z., Su, S.F., Wang, Y.Y.: Fuzzy uncertainty observer based path following control of underactuated marine vehicles with unmodelled dynamics and disturbances. Int. Conf. Fuzzy Theory Appl. (iFUZZY) (2017). Google Scholar
  29. 29.
    Mei, J., Ren, W., Ma, G.F.: Distributed coordinated tracking with a dynamic leader for multiple Euler–Lagrange systems. IEEE Trans. Autom. Control 56(6), 1415–1421 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nuño, E., Ortega, R., Basañez, L., Hill, D.: Synchronization of networks of nonidentical Euler–Lagrange systems with uncertain parameters and communication delays. IEEE Trans. Autom. Control 56(4), 935–941 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhang, H., Lewis, F.L.: Adaptive cooperative tracking control for high-order nonlinear systems with unknown nonlinearities. Automatica 48, 1432–1439 (2012)CrossRefzbMATHGoogle Scholar
  32. 32.
    Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ACME Trans. Mechatron. 14(2), 219–228 (2009)CrossRefGoogle Scholar
  33. 33.
    Wang, Z.P., Ge, S.S., Lee, T.H.: Robust motion/force control of uncertain holonomic/nonholonomic mechanical systems. IEEE-ASME Trans. Mechatron. 9(1), 118–123 (2004)CrossRefGoogle Scholar
  34. 34.
    Chen, M., Shao, S.Y., Jiang, B.: Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans. Cybern. 47(10), 3110–3123 (2017)CrossRefGoogle Scholar
  35. 35.
    Cheng, L., Hou, Z., Tan, M., Lin, Y., Zhang, W.: Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans. Neural Netw. 21(8), 1351–1358 (2010)CrossRefGoogle Scholar
  36. 36.
    Yang, C.G., Teng, T., Xu, B., Li, Z.J., Na, J., Su, C.Y.: Global adaptive tracking control of robot manipulators using neural networks with finite-time learning convergence. Int. J. Control Autom. Syst. 15(4), 1916–1924 (2017)CrossRefGoogle Scholar
  37. 37.
    Sun, Y.C., Wang, W.J., Ma, G.F., Li, Z., Li, C.J.: Backstepping-based distributed coordinated tracking for multiple uncertain Euler–Lagrange systems. J. Syst. Eng. Electron. 27(5), 1083–1095 (2016)CrossRefGoogle Scholar
  38. 38.
    Sun, Y.C., Chen, L.M., Ma, G.F., Li, C.J.: Adaptive neural network tracking control for multiple uncertain Euler–Lagrange Systems with communication delays. J. Franklin Inst. 354(7), 2677–2698 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ren, W., Beard, R.W.: Distributed consensus in multi-vehicle cooperative control. Springer-Verilag, London (2008)CrossRefzbMATHGoogle Scholar
  40. 40.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Yu, S., Yu, X., Shirinzadeh, B.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zhao, L., Jia, Y.M.: Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults. Int. J. Syst. Sci. 47(8), 1931–1942 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.Science and Technology on Underwater Vehicle LaboratoryHarbin Engineering UniversityHarbinPeople’s Republic of China
  2. 2.Department of Mechanical and Biomedical EngineeringCity University of Hong KongHong Kong SARPeople’s Republic of China

Personalised recommendations