A New Failure-Censored Reliability Test Using Neutrosophic Statistical Interval Method

  • Muhammad AslamEmail author


The failure-censored reliability tests available in the literature are applied when under the assumption that all failure data/observations are precise, clear and determinate. But, in practice, when the variable failure data/observations obtained from the measurement process are not precise, clear and determinate, the failure-censored reliability tests using classical statistics cannot be applied for the reliability testing. A more generalized form of the classical statistics is known as neutrosophic statistics which can be applied when the measurable failure data/observations are indeterminate, unclear, incomplete and vague. In this manuscript, we will originally design failure-censored reliability tests using the neutrosophic fuzzy approach. The neutrosophic plan parameters of the proposed neutrosophic fuzzy failure-censored reliability plan assume that the failure time follows the neutrosophic Weibull distribution. The neutrosophic fuzzy optimization problem is used to determine the neutrosophic plan parameters for given producer’s risk and consumer’s risk. Some tables are given for the practical use and exampled with the help of an example.


Neutrosophic statistics Fuzzy approach Neutrosophic Weibull distribution Neutrosophic plan parameters Risk 



The author is deeply thankful to the editor and the reviewers for their valuable suggestions to improve the quality of this manuscript. This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (D-045-130-1440). The author, therefore, gratefully acknowledge the DSR technical and financial support.


  1. 1.
    Fertig, K., Mann, N.R.: Life-test sampling plans for two-parameter Weibull populations. Technometrics 22(2), 165–177 (1980)CrossRefGoogle Scholar
  2. 2.
    Jun, C.-H., Balamurali, S., Lee, S.-H.: Variables sampling plans for Weibull distributed lifetimes under sudden death testing. IEEE Trans. Reliab. 55(1), 53–58 (2006)CrossRefGoogle Scholar
  3. 3.
    Kantam, R., Srinivasa Rao, G., Sriram, B.: An economic reliability test plan: log-logistic distribution. J. Appl. Stat. 33(3), 291–296 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Tsai, T.-R., Wu, S.-J.: Acceptance sampling based on truncated life tests for generalized Rayleigh distribution. J. Appl. Stat. 33(6), 595–600 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Huang, S.-R., Wu, S.-J.: Reliability sampling plans under progressive type-I interval censoring using cost functions. IEEE Trans. Reliab. 57(3), 445–451 (2008)CrossRefGoogle Scholar
  6. 6.
    Pérez-González, C.J., Fernández, A.J.: Accuracy of approximate progressively censored reliability sampling plans for exponential models. Stat. Pap. 50(1), 161–170 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aslam, M., Jun, C.-H.: A group acceptance sampling plan for truncated life test having Weibull distribution. J. Appl. Stat. 36(9), 1021–1027 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wu, S.-J., Huang, S.-R.: Progressively first-failure censored reliability sampling plans with cost constraint. Comput. Stat. Data Anal. 56(6), 2018–2030 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aslam, M., Jun, C.-H., Arshad, A.: SkSP-V sampling plan for accelerated life tests. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 229(3), 193–199 (2015)Google Scholar
  10. 10.
    Aslam, M., Azam, M., Jun, C.-H.: Acceptance sampling plans for multi-stage process based on time-truncated test for Weibull distribution. Int. J. Adv. Manuf. Technol. 79(9–12), 1779–1785 (2015)CrossRefGoogle Scholar
  11. 11.
    EL-Sagheer, R.M.: Inferences in constant-partially accelerated life tests based on progressive type-II censoring. Bull. Malays. Math. Sci. Soc. 41(2), 609–626 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Singh, S., Tripathi, Y.M.: Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring. Stat. Pap. 59(1), 21–56 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Aslam, M., et al.: A new variables sampling plan for life testing in a continuous process under Weibull distribution. Pak. J. Stat. 26(3), 539–546 (2010)MathSciNetGoogle Scholar
  14. 14.
    Kanagawa, A., Ohta, H.: A design for single sampling attribute plan based on fuzzy sets theory. Fuzzy Sets Syst. 37(2), 173–181 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tamaki, F., Kanagawa, A., Ohta, H.: A fuzzy design of sampling inspection plans by attributes (Journal of Japan Society for Fuzzy Theory and Systems). 日本ファジィ学会誌 3(4), 211–212 (1991)Google Scholar
  16. 16.
    Cheng, S.-R., Hsu, B.-M., Shu, M.-H.: Fuzzy testing and selecting better processes performance. Ind. Manag. Data Syst. 107(6), 862–881 (2007)CrossRefGoogle Scholar
  17. 17.
    Zarandi, M., Alaeddini, A., Turksen, I.: A hybrid fuzzy adaptive sampling—run rules for Shewhart control charts. Inf. Sci. 178(4), 1152–1170 (2008)CrossRefGoogle Scholar
  18. 18.
    Viertl, R.: On reliability estimation based on fuzzy lifetime data. J. Stat. Plan. Inference 139(5), 1750–1755 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Alaeddini, A., Ghazanfari, M., Nayeri, M.A.: A hybrid fuzzy-statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Inf. Sci. 179(11), 1769–1784 (2009)CrossRefGoogle Scholar
  20. 20.
    Sadeghpour Gildeh, B., Baloui Jamkhaneh, E., Yari, G.: Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 8(2), 47–55 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Jamkhaneh, E.B., Sadeghpour-Gildeh, B., Yari, G.: Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 43(4), 555–560 (2011)CrossRefGoogle Scholar
  22. 22.
    Divya, P.: Quality interval acceptance single sampling plan with fuzzy parameter using poisson distribution. Int. J. Adv. Res. Technol. 1(3), 115–125 (2012)Google Scholar
  23. 23.
    Jamkhaneh, E.B., Gildeh, B.S.: Acceptance double sampling plan using fuzzy poisson distribution. World. Appl. Sci. J. 16(11), 1578–1588 (2012)Google Scholar
  24. 24.
    Turanoğlu, E., Kaya, İ., Kahraman, C.: Fuzzy acceptance sampling and characteristic curves. Int. J. Comput. Intell. Syst. 5(1), 13–29 (2012)CrossRefGoogle Scholar
  25. 25.
    Jamkhaneh, E.B., Gildeh, B.S.: Sequential sampling plan using fuzzy SPRT. J. Intell. Fuzzy Syst. 25(3), 785–791 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Venkateh, A., Elango, S.: Acceptance sampling for the influence of TRH using crisp and fuzzy gamma distribution. Aryabhatta J. Math. Inform. 6(1), 119–124 (2014)Google Scholar
  27. 27.
    Afshari, R., Gildeh, B.S.: Construction of fuzzy multiple deferred state sampling plan. In: Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017 Joint 17th World Congress of International. IEEE (2017)Google Scholar
  28. 28.
    Afshari, R., Gildeh, B.S., Sarmad, M.: Multiple deferred state sampling plan with fuzzy parameter. Int. J. Fuzzy Syst. 33, 1–9 (2017)zbMATHGoogle Scholar
  29. 29.
    Afshari, R., Sadeghpour Gildeh, B., Sarmad, M.: Fuzzy multiple deferred state attribute sampling plan in the presence of inspection errors. J. Intell. Fuzzy Syst. 33(1), 503–514 (2017)CrossRefGoogle Scholar
  30. 30.
    Elango, S., Venkatesh, A., Sivakumar, G.: A fuzzy mathematical analysis for the effect of TRH using acceptance sampling plans. Int. J. Pure. Appl. Math. 117(5), 1–11 (2017)Google Scholar
  31. 31.
    Wang, Y., et al.: Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern. 99, 1–11 (2018)Google Scholar
  32. 32.
    Wang, Y., et al.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. 26, 6–18 (2018)CrossRefGoogle Scholar
  33. 33.
    Wang, Y., et al.: Dissipativity-based fuzzy integral sliding mode control of continuous-time TS fuzzy systems. IEEE Trans. Fuzzy Syst. 26(3), 1164–1176 (2018)CrossRefGoogle Scholar
  34. 34.
    Smarandache, F.: Neutrosophic logic—a generalization of the intuitionistic fuzzy logic. In: Multispace & Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Science), vol. 4, p. 396 (2010)Google Scholar
  35. 35.
    Smarandache, F.: Introduction to neutrosophic statistics. Infinite Study, New York (2014)zbMATHGoogle Scholar
  36. 36.
    Chen, J., Ye, J., Du, S.: Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9(10), 208 (2017)CrossRefGoogle Scholar
  37. 37.
    Chen, J., et al.: Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9(7), 123 (2017)CrossRefGoogle Scholar
  38. 38.
    Smarandache, F., Vlădăreanu, L.: Applications of neutrosophic logic to robotics. Trickle Up Eff. (2013).
  39. 39.
    Aslam, M.: A new sampling plan using neutrosophic process loss consideration. Symmetry 10(5), 132 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Aslam, M., Raza, M.A.: Design of new sampling plans for multiple manufacturing lines under uncertainty. Int. J. Fuzzy Syst. 38, 1–15 (2018)Google Scholar
  41. 41.
    Aslam, M., Arif, O.: Testing of grouped product for the Weibull distribution using neutrosophic statistics. Symmetry 10(9), 403 (2018)CrossRefGoogle Scholar
  42. 42.
    Schneider, H.: Failure-censored variables-sampling plans for lognormal and Weibull distributions. Technometrics 31(2), 199–206 (1989)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Statistics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations