Advertisement

International Journal of Fuzzy Systems

, Volume 21, Issue 2, pp 583–591 | Cite as

State Feedback Controller Design for General Polynomial-Fuzzy-Model-Based Systems with Time-Varying Delay

  • Dan YeEmail author
  • Xiehuan Li
Article
  • 95 Downloads

Abstract

This paper mainly investigates the state feedback controller design and the stability analysis for the general polynomial-fuzzy-model-based systems with time-varying delay. A Lyapunov–Krasovskii (L–K) function with the delay information in integral parts is used in the stability analysis process, and the time-delay terms are solved by an introduced lemma. Here, the assumption that the input matrices and the delay matrices have zero rows at the same time is not needed. A novel square of sum (SOS) optimization method successfully solves the non-convex problem by transforming the nonlinear terms and the time-varying delay matrix items into indices, which are optimized to zero by a semi-definite programming. The resultant SOS conditions are delay dependent, and more flexible stability conditions are obtained by introducing the slack matrices. Numerical simulation proves the effectiveness of the method.

Keywords

Semi-definite programming Polynomial-fuzzy-model-based systems Slack matrix Time-varying delay Lyapunov–Krasovskii function 

Notes

Acknowledgements

This work is supported by in part by National Natural Science Foundation of China (Grant No. 61773097) and the Fundamental Research Funds for the Central Universities (Grant No. N160402004).

References

  1. 1.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(2), 116–132 (1985)CrossRefzbMATHGoogle Scholar
  2. 2.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhang, H.G., Liu, D.R.: Fuzzy Modeling and Fuzzy Control. Birkhauser, Boston (2006)zbMATHGoogle Scholar
  4. 4.
    Lam, H.K., Chan, E.W.S.: Stability analysis of sampled-data fuzzy-model-based control systems. Int. J. Fuzzy Syst. 10(2), 129–135 (2008)MathSciNetGoogle Scholar
  5. 5.
    Li, H.Y., Wu, C.W., Shi, P., et al.: Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. 45(11), 2378–2389 (2015)CrossRefGoogle Scholar
  6. 6.
    Zhang, L.L., Tong, S.C., Li, Y.M.: Adaptive fuzzy output-feedback control with prescribed performance for uncertain nonlinear systems. Int. J. Fuzzy Syst. 16(2), 212–221 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tong, S.C., Sui, S., Li, Y.M.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)CrossRefGoogle Scholar
  8. 8.
    Li, H.Y., Pan, Y.N., Shi, P., et al.: Switched fuzzy output feedback control and its application to a mass-spring-damping system. IEEE Trans. Fuzzy Syst. 24(6), 1259–1269 (2016)CrossRefGoogle Scholar
  9. 9.
    Tong, S.C., Li, Y., Li, Y.M., Liu, Y.J.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man Cybern. Part B 41(6), 1693–1704 (2011)CrossRefGoogle Scholar
  10. 10.
    Jiang, B., Mao, Z.H., Shi, P.: \(H_{\infty }\)-filter design for a class of networked control systems via T–S fuzzy-model approach. IEEE Trans. Fuzzy Syst. 18(1), 201–208 (2010)CrossRefGoogle Scholar
  11. 11.
    Li, H.Y., Pan, Y.N., Zhou, Q.: Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame. IEEE Trans. Fuzzy Syst. 23(3), 719–725 (2015)CrossRefGoogle Scholar
  12. 12.
    Pan, Y.N., Li, H.Y., Zhou, Q.: Fault detection for interval type-2 fuzzy systems with sensor nonlinearities. Neurocomputing 145, 488–494 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, Y.Y., Zhang, H.G., Zhang, J.Y.: An SOS-based observer design for discrete-time polynomial fuzzy systems. Int. J. Fuzzy Syst. 17(1), 94–104 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tanaka, K., Yoshida, H., Ohtake, H., et al.: A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)CrossRefGoogle Scholar
  15. 15.
    Lam, H.K., Tsai, S.H.: Stability analysis of polynomial-fuzzy-model-based control systems with mismatch premise membership functions. IEEE Trans. Fuzzy Syst. 22(1), 223–229 (2014)CrossRefGoogle Scholar
  16. 16.
    Lam, H.K., Li, H.Y.: Output-feedback tracking control for polynomial fuzzy-model-based control systems. IEEE Trans. Ind. Electron. 60(12), 5830–5840 (2013)CrossRefGoogle Scholar
  17. 17.
    Xiao, B., Lam, H.K., Song, G., et al.: Output-feedback tracking control for interval type-2 polynomial fuzzy-model-based control systems. Neurocomputing 242, 83–95 (2017)CrossRefGoogle Scholar
  18. 18.
    Li, H.Y., Chen, Z.R., Wu, L.G., et al.: Event-triggered fault detection of nonlinear networked systems. IEEE Trans. Cybern. 47(4), 1041–1052 (2017)CrossRefGoogle Scholar
  19. 19.
    Lam, H.K., Wu, L., Lam, J.: Two-step stability analysis for general polynomial-fuzzy-model-based control systems. IEEE Trans. Fuzzy Syst. 23(3), 511–524 (2015)CrossRefGoogle Scholar
  20. 20.
    Ye, D., Diao, N.N., Zhao, X.G.: Fault-tolerant controller design for general polynomial-fuzzy-model-based systems. IEEE Trans. Fuzzy Syst. 26(2), 1046–1051 (2018)CrossRefGoogle Scholar
  21. 21.
    Xia, H., Zhao, P., Li, L., et al.: A novel approach to control design for linear neutral time-delay systems. Math. Probl. Eng. 2013, 1–9 (2013)MathSciNetGoogle Scholar
  22. 22.
    Wu, A.G., Duan, G.R.: On delay-independent stability criteria for linear time-delay systems. Int. J. Autom. Comput. 4(1), 95–100 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhu, B., Zhang, Q., Chang, C.: Delay-dependent dissipative control for a class of non-linear system via Takagi–Sugeno fuzzy descriptor model with time delay. IET Control Theory Appl. 8(7), 451–461 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bourahala, F., Guelton, K., Manamanni, N., et al.: Relaxed controller design conditions for Takagi–Sugeno systems with state time-varying delays. Int. J. Fuzzy Syst. 19(5), 1406–1416 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li, X.M., Lam, H.K., Liu, F.C., et al.: Stability and stabilization analysis of positive polynomial fuzzy systems with time delay considering piecewise membership functions. IEEE Trans. Fuzzy Syst. 25(4), 958–971 (2017)CrossRefGoogle Scholar
  26. 26.
    Li, X.M., Lam, H.K., Song, G., et al.: Stability analysis of positive polynomial fuzzy-model-based control systems with time delay under imperfect premise matching. IEEE Trans. Fuzzy Syst. 26(4), 2289–2300 (2018)CrossRefGoogle Scholar
  27. 27.
    Gassara, H., El Hajjaji, A., Chaabane, M.: Design of polynomial fuzzy observer–controller for nonlinear systems with state delay: sum of squares approach. Int. J. Syst. Sci. 48(9), 1954–1965 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Xiao, B., Lam, H.K., Yang, X., et al.: Tracking control design of interval type-2 polynomial-fuzzy-model-based systems with time-varying delay. Eng. Appl. Artif. Intell. 75, 76–87 (2018)CrossRefGoogle Scholar
  29. 29.
    Li, Y., Lam, H.K., Zhang, L.: Control design for interval type-2 polynomial fuzzy-model-based systems with time-varying delay. IET Control Theory Appl. 11(14), 2270–2278 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, C., Lam, H.K., Ban, X., et al.: Design of polynomial fuzzy observer–controller with membership functions using unmeasurable premise variables for nonlinear systems. Inf. Sci. 355, 186–207 (2016)CrossRefGoogle Scholar
  31. 31.
    Pang, B., Zhang, Q.L.: Interval observers design for polynomial fuzzy singular systems by utilizing sum-of-squares program. IEEE Trans. Syst. Man Cybern. Syst. (2018)  https://doi.org/10.1109/TSMC.2018.2790975
  32. 32.
    Ma, H.J., Yang, G.H.: Fault-tolerant control synthesis for a class of nonlinear systems: sum of squares optimization approach. Int. J. Robust Nonlinear Control 19(5), 591–610 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNortheastern University, State Key Laboratory of Synthetical Automation of Process IndustriesShenyangChina
  2. 2.College of Information Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations