International Journal of Fuzzy Systems

, Volume 21, Issue 2, pp 488–502 | Cite as

Bit Pressure Control During Drilling Operations Using a Direct Fuzzy Adaptive Controller

  • Mahdi Imanian
  • Aazam GhassemiEmail author
  • Mahdi Karbasian


One of the high-risk parts in the oil industry is the drilling of oil and gas wells. At any moment, during drilling operations, there is the probability of well blowout due to the sudden entry of the formation fluid into the well. One of the methods used for preventing the blowout of wells is the online monitoring and control of bit pressure during the drilling operations. In this article, a direct fuzzy adaptive controller is used to control bit pressure. To evaluate the performance of this controller, the results are compared with three methods including the model reference adaptive controller, the self-tuning controller and the proportional–integral–derivative controller. Also, for the first time, the reference tracking scenario is used to investigate the ability of the controller to track bit pressure by changing the reference pressure of different formations during the drilling operations. The results show the superiority of the direct fuzzy adaptive control in controlling bit pressure based on the process output tracking criteria, control effort, controller tracking error and cost functions, as compared to other controllers.


Direct fuzzy adaptive control Bit pressure Blowout Reference tracking 

List of symbols

Model variables


Mud pump pressure (bar)


Choke manifold pressure (bar)


Bit pressure (bar)


Mud pump flow rate \(({\text{m}}^{3} / {\text{s}})\)


Chock manifold flow rate \(({\text{m}}^{3} / {\text{s}})\)


Bit flow rate \(({\text{m}}^{3} / {\text{s}})\)

Initial values


Initial mud pump pressure (bar)


Initial choke manifold pressure (bar)


Initial bit flow rate \(({\text{m}}^{3} / {\text{s}})\)

Model parameters


Annulus mud bulk modulus (bar)


Drill string mud bulk modulus (bar)


Annulus volume \(({\text{m}}^{3} )\)


Drill string volume \(({\text{m}}^{3} )\)


Mass coefficient of the annulus \((10^{ - 5} \times {\text{kg/m}}^{4} )\)


Mass coefficient of the drill string \((10^{ - 5} \times {\text{kg/m}}^{4} )\)


Annulus friction factor


Drill string friction factor


Annulus density \((10^{ - 5} \times {\text{kg/m}}^{3} )\)


Drill string density \((10^{ - 5} \times {\text{kg/m}}^{3} )\)


Vertical depth of the drill bit (m)


Gravity acceleration \(({\text{m/s}}^{2} )\)


Flow rate of reservoir fluids \(({\text{m}}^{3} / {\text{s}})\)


Back pump flow rate \(({\text{m}}^{3} / {\text{s}})\)


Pressure outside system (bar)


  1. 1.
    Li, J., Yang, S., Liu, G.: Cutting breakage and transportation mechanism of air drilling. Int. J. Oil Gas Coal Technol. 6(3), 259–270 (2013)CrossRefGoogle Scholar
  2. 2.
    Wang, Z., Sun, B.: Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition. Pet. Sci. 6(1), 57–63 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zhiming, W., Liqiu, P., Ke, Z.: Prediction of dynamic wellbore pressure in gasified fluid drilling. Pet. Sci. 4(4), 66–73 (2007)CrossRefGoogle Scholar
  4. 4.
    Imanian, M., Ghassemi, A., Karbasian, M.: Monitoring and control of bottomhole pressure during surge and swab operations using statistical process control. Energy Source Part A 40(8), 894–904 (2018)CrossRefGoogle Scholar
  5. 5.
    Nandan, A., Imtiaz, S.: Nonlinear model predictive control of managed pressure drilling. ISA Trans. 69, 307–314 (2017)CrossRefGoogle Scholar
  6. 6.
    Liu, G., Zhang, T., Li, J., Yulong, Y.: Modeling the pressure characteristics of parallel chokes used in managed pressure drilling and related experiments. Pet. Sci. 9(3), 363–369 (2012)CrossRefGoogle Scholar
  7. 7.
    Kaasa, G.-O., Stamnes, Ø.N., Aamo, O.M., Imsland, L.S.: Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system. SPE Drill. Complet. 27(1), 127–138 (2012)CrossRefGoogle Scholar
  8. 8.
    Salahshoor, K., Lotfi, B.: Adaptive control of well drilling systems. Irani. J. Oil Gas Sci. Technol. 2(4), 26–38 (2013)Google Scholar
  9. 9.
    Imanian, M., Ghassemi, A., Karbasian, M.: Bit pressure control during drilling operation using engineering process control. Energy Source Part A 40(18), 2193–2202 (2018)CrossRefGoogle Scholar
  10. 10.
    Astrom, K.J., Wittenmark, B.: Adaptive control, 2nd edn. Addison-Wesley, Massachusetts (2008)Google Scholar
  11. 11.
    Astrom, K.J., Borisson, U., Ljung, L., Wittenmark, B.: Theory and applications of self-tuning regulators. Automatica 13(5), 457–476 (1977)CrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, L.X.: A course in fuzzy systems and control, 1st edn. Prentice-Hall, New Jersey (1996)Google Scholar
  13. 13.
    Kavuran, G., Ates, A., Alagoz, B.B., Yeroglu, C.: An experimental study on model reference adaptive control with fractional order adjustment rules for DC rotor control. Control Eng. Appl. Inform. 19(4), 101–111 (2017)Google Scholar
  14. 14.
    Zhang, F., Li, Y., Hua, J.: Direct adaptive fuzzy control of SISO nonlinear systems with input–output nonlinear relationship. Int. J. Fuzzy Syst. 20(4), 1069–1078 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Veysi, M., Soltanpour, M.R.: Voltage-base control of robot manipulator using adaptive fuzzy sliding mode control. Int. J. Fuzzy Syst. 19(5), 1430–1443 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bounar, M., Boulkoroune, A., Boudjemam, F.: Adaptive fuzzy control of doubly-fed induction machine. Control Eng. Appl. Inform. 16(2), 98–110 (2014)Google Scholar
  17. 17.
    Yang, L., Li, J.: Adaptive fuzzy sliding mode control for nano-positioning of piezoelectric actuators. Int. J. Fuzzy Syst. 19(1), 238–246 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang, N., Tong, S., Li, Y.: Observer-based adaptive fuzzy control of nonlinear non-strict feedback system with input delay. Int. J. Fuzzy Syst. 20(1), 236–245 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, Y., Tong, S.: Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1–10 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, Y., Tong, S.: Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 2243–2255 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dombi, J., Szepe, T.: Arithmetic-based fuzzy control. Iran. J. Fuzzy. Syst. 14(4), 51–66 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wang, M.L., Joel, A.P., Yan, H.C., Shi, H.B.: An adaptive model predictive control strategy for nonlinear distributed parameter systems using the type-2 Takagi–Sugeno model. Int. J. Fuzzy Syst. 18(5), 792–805 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, Y.J., Tong, S.C.: Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 23(5), 1387–1398 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Wang, Z.F., Liu, Y.J., Tong, S.C.: Fuzzy tracking adaptive control of discrete-time switched nonlinear systems. Fuzzy Sets Syst. 316(1), 35–48 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gao, Y., Tong, S.C.: Composite adaptive fuzzy output feedback dynamic surface control design for uncertain nonlinear stochastic systems with input quantization. Int. J. Fuzzy Syst. 17(4), 609–622 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tong, S.C., Li, Y.M., Sui, S.A.: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities. IEEE Trans. Fuzzy Syst. 24(6), 1426–1440 (2016)CrossRefGoogle Scholar
  28. 28.
    Tong, S.C., Li, Y.M., Sui, S.A.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 4(6), 1441–1454 (2016)CrossRefGoogle Scholar
  29. 29.
    Lin, T.C., Lin, Y.C., Du, Z.B., Chu, T.C.: Indirect adaptive fuzzy supervisory control with state observer for unknown nonlinear time delay system. Int. J. Fuzzy Syst. 19(1), 215–224 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.: Sampled-data synchronization of complex networks with partial couplings and T–S fuzzy nodes. IEEE Trans. Fuzzy Syst. 26(2), 782–793 (2018)CrossRefGoogle Scholar
  31. 31.
    Wu, Y., Lu, R.: Event-based control for network systems via integral quadratic constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 65(4), 1386–1394 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.: Analysis and design of synchronization for heterogeneous network. IEEE Trans. Cybern. 48(4), 1253–1262 (2018)CrossRefGoogle Scholar
  33. 33.
    Jagatheesan, K., Anand, B., Dey, K.N., Ashour, A.S., Satapathy, S.C.: Performance evaluation of objective functions in automatic generation control of thermal power system using ant colony optimization technique-designed proportional–integral–derivative controller. Electr. Eng. 100(2), 895–911 (2017)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  2. 2.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  3. 3.Department of Industrial EngineeringMaleke Ashtar University of TechnologyShahinshahrIran

Personalised recommendations