Advertisement

International Journal of Fuzzy Systems

, Volume 21, Issue 2, pp 545–555 | Cite as

Finite-Time Adaptive Fuzzy Tracking Control Design for Parallel Manipulators with Unbounded Uncertainties

  • Van-Truong NguyenEmail author
  • Chyi-Yeu Lin
  • Shun-Feng Su
  • Wei Sun
Article
  • 56 Downloads

Abstract

In this paper, a finite-time adaptive fuzzy tracking control scheme is proposed for parallel manipulators with unbounded uncertainties. The proposed approach is based on fuzzy logic systems (FLS), nonsingular fast terminal sliding mode control (NFTSMC) and adaptive sliding compensation from nonlinearities in output feedback. FLS are adopted to handle system uncertainties and external disturbances. This learning approach does not require knowledge of parallel manipulator dynamics. The proposed control scheme can possess several advantages over other state-of-the-art approaches such as rapid response, robustness, higher precision, nonsingular, and finite-time converge. Besides, since the proposed approach is a hybrid scheme of NFTSMC and FLS, the proposed controller can have much better tracking control performance. The finite-time convergence and stability of the closed-loop robotic system are ensured by the Lyapunov theory. Finally, from the simulation results, it is clearly evident that the proposed approach can indeed outperform previous existing methods.

Keywords

Parallel manipulator NFTSMC Fuzzy logic systems Finite-time stability 

Notes

Acknowledgements

This work was supported by the National Science Council, Taiwan, under Grant NSC 101-2221-E-011-077-MY3, “Center for Cyberphysical System Innovation” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan, and the National Natural Science Foundation of China under Grant 61603170.

References

  1. 1.
    Nguyen, V.T., Lin, C.Y., Su, S.F., Tran, Q.V.: Adaptive PID tracking control based radial basic function networks for a 2-DOF parallel manipulator. In: Proc. IEEE Int. Conf. Syst. Sci. Eng. (ICSSE), pp. 309–312 (2017)Google Scholar
  2. 2.
    Wang, N., Su, S.F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)CrossRefGoogle Scholar
  3. 3.
    Sun, N., Yang, T., Chen, H., Fang, Y., Qian, Y.: Adaptive anti-swing and positioning control for 4-dof rotary cranes subject to uncertain/unknown parameters with hardware experiments. IEEE Trans. Syst. Man. Cybern. Syst (2018).  https://doi.org/10.1109/tsmc.2017.2765183 Google Scholar
  4. 4.
    Van, M., Ge, S.S., Ren, H.: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans. Cybern. 47(7), 1681–1693 (2017)CrossRefGoogle Scholar
  5. 5.
    Xu, S.S.D., Chen, C.C., Wu, Z.L.: Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans. Ind. Electron. 62(6), 3906–3913 (2015)Google Scholar
  6. 6.
    Chen, C.C., Xu, S.S.D., Liang, Y.W.: Study of nonlinear integral sliding mode fault-tolerant control. IEEE/ASME Trans. Mechatron. 21(2), 1160–1168 (2016)CrossRefGoogle Scholar
  7. 7.
    Incremona, G.P., Rubagotti, M., Ferrara, A.: Sliding mode control of constrained nonlinear systems. IEEE Trans. Automat. Contr. 62(6), 2965–2972 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Li, X.J., Yang, G.H.: Fuzzy approximation-based global pinning synchronization control of uncertain complex dynamical networks. IEEE Trans. Cybern. 47(4), 873–883 (2017)CrossRefGoogle Scholar
  9. 9.
    Chen, H., Liang, J., Lu, J.: Partial synchronization of interconnected boolean networks. IEEE Trans. Cybern. 47(1), 258–266 (2017)CrossRefGoogle Scholar
  10. 10.
    Xiao, H., Li, Z., Yang, C., Zhang, L., Yuan, P., Ding, L., Wang, T.: Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. EEE Trans. Ind. Electron. 64(1), 505–516 (2017)CrossRefGoogle Scholar
  11. 11.
    Liu, G.P.: Predictive control of networked multiagent systems via cloud computing. IEEE Trans. Cybern. 47(8), 1852–1859 (2017)CrossRefGoogle Scholar
  12. 12.
    Sui, S., Tong, S., Chen, C.L.P.: Finite-time filter decentralized control for nonstrict-feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/tfuzz.2018.2821629 Google Scholar
  13. 13.
    Sun, W., Wu, Y.J.: Modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. J. Syst. Sci. Complex. 29(3), 589–601 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xia, J., Zhang, J., Sun, W., Zhang, B., Wang, Z.: Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans. Syst. Man. Cybern. Syst (2018).  https://doi.org/10.1109/tsmc.2018.2854770 Google Scholar
  15. 15.
    Sun, X., Liu, G., Wang, W., Rees, D.: L 2-gain of systems with input delays and controller temporary failure: zero-order hold model. IEEE Trans. Control Syst. Technol. 19(3), 699–706 (2011)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Sun, X., Wu, B.: Lyapunov-Krasovskii functionals for switched nonlinear input delay systems under asynchronous switching. Automatica. 61, 126–133 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, N., Su, S.F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)CrossRefGoogle Scholar
  18. 18.
    Sui, S., Li, Y., Tong, S.: Observer-based adaptive fuzzy control for switched stochastic nonlinear systems with partial tracking errors constrained. IEEE Trans. Syst. Man. Cybern. Syst. 46(12), 1605–1617 (2016)CrossRefGoogle Scholar
  19. 19.
    Su, S.F., Chen, M., Hsueh, Y.: A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans. Syst. Man. Cybern. Syst. 47(8), 2311–2317 (2017)CrossRefGoogle Scholar
  20. 20.
    Yeh, J., Su, S.F.: Efficient approach for RLS type learning in TSK neural fuzzy systems. IEEE Trans. Cybern. 47(9), 2343–2352 (2017)CrossRefGoogle Scholar
  21. 21.
    Wang, H., Liu, P.X., Niu, B.: Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems. IEEE Trans. Cybern. 48(8), 2462–2471 (2018)CrossRefGoogle Scholar
  22. 22.
    Wang, H., Liu, W., Qiu, J., Liu, P.X.: Adaptive fuzzy decentralized control for a class of strong interconnected nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 26(2), 836–846 (2018)CrossRefGoogle Scholar
  23. 23.
    Xia, J., Chen, G., Sun, W.: Extended dissipative analysis of generalized Markovian switching neural networks with two delay components. Neurocomputing. 260, 275–283 (2017)CrossRefGoogle Scholar
  24. 24.
    Wang, H., Karimi, H.R., Liu, P.X., Yang, H.: Adaptive neural control of nonlinear systems with unknown control directions and input dead-zone. IEEE Trans. Syst. Man. Cybern. Syst (2018).  https://doi.org/10.1109/tsmc.2017.2709813 Google Scholar
  25. 25.
    Nguyen, V.T., Lin, C.Y., Su, S. F., Nguyen, N.Q., Tran, Q.V.: Adaptive PD networks tracking control with full-state constraints for redundant parallel manipulators. In: Proc. 17th World Congress of Int. Fuzzy Syst. Association and 9th Int. Conf. Soft Computing and Int. Syst. (IFSA-SCIS), pp. 1–5 (2017)Google Scholar
  26. 26.
    Zeghlache, S., Benslimane, T., Amardjia, N., Bouguerra, A.: Interval type-2 fuzzy sliding mode controller based on nonlinear observer for a 3-DOF helicopter with uncertainties. Int. J. Fuzzy Syst. 19(5), 1444–1463 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Su, S.F., Hsueh, Y.C., Tseng, C.P., Chen, S.S., Lin, Y.S.: Direct adaptive fuzzy sliding mode control for under-actuated uncertain systems. Int. J. Fuzzy Log. Intell. Syst. 15(4), 240–250 (2015)CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Shen, H., Karimi, H.R., Duan, D.: Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems. IEEE Trans. Fuzzy Syst (2017).  https://doi.org/10.1109/tfuzz.2017.2710952 Google Scholar
  29. 29.
    Fei, J., Lu, C.: Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1275–1286 (2018)CrossRefGoogle Scholar
  30. 30.
    Nguyen, V.T., Lin, C.Y., Su, S.F., Tran, Q.V.: Adaptive chattering free network-based sliding mode control for trajectory tracking of planar redundant parallel manipulators. Asian J. Control. 21(3), 1–16 (2019)Google Scholar
  31. 31.
    Tran, M.D., Kang, H.J.: Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system. Neurocomputing. 228, 231–240 (2017)CrossRefGoogle Scholar
  32. 32.
    Zad, H.S., Khan, T.I., Lazoglu, I.: Design and adaptive sliding-mode control of hybrid magnetic bearings. IEEE Trans. Ind. Electron. 65(3), 2537–2547 (2018)CrossRefGoogle Scholar
  33. 33.
    Wang, Y., Gao, Y., Karimi, H.R., Shen, H., Fang, Z.: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Syst. Man. Cybern. Syst (2018).  https://doi.org/10.1109/tsmc.2017.2720968 Google Scholar
  34. 34.
    Yu, Y., Yang, Z., Han, C., Liu, H.: Fuzzy adaptive back-stepping sliding mode controller for high-precision deflection control of the magnetically suspended momentum wheel. IEEE Trans. Ind. Electron. 65(4), 3530–3538 (2018)CrossRefGoogle Scholar
  35. 35.
    Lin, F.J., Chen, S.G., Sun, I.F.: Intelligent sliding-mode position control using recurrent wavelet fuzzy neural network for electrical power steering system. Int. J. Fuzzy Syst. 19(5), 1344–1361 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wang, Y., Xia, Y., Shen, H., Zhou, P.: SMC design for robust stabilization of nonlinear markovian jump singular systems. IEEE Trans. Automat. Contr. 63(1), 219–224 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lin, F., Hung, Y., Ruan, K.: An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Trans. Fuzzy Syst. 22(6), 1598–1611 (2014)CrossRefGoogle Scholar
  38. 38.
    Sun, W., Yuan, W., Shao, Y., Sun, Z., Zhao, J., Sun, Q.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with full-state constraints. Int. J. Fuzzy Syst (2018).  https://doi.org/10.1007/s40815-018-0545-9 MathSciNetGoogle Scholar
  39. 39.
    Wang, F., Chen, B., Liu, X., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1207–1216 (2018)CrossRefGoogle Scholar
  40. 40.
    Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica. 41(11), 1957–1964 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Van-Truong Nguyen
    • 1
    • 2
    Email author
  • Chyi-Yeu Lin
    • 1
  • Shun-Feng Su
    • 3
  • Wei Sun
    • 4
  1. 1.Department of Mechanical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  2. 2.Department of Mechanical EngineeringHanoi University of IndustryHanoiVietnam
  3. 3.Department of Electrical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  4. 4.School of Mathematics ScienceLiaocheng UniversityLiaochengChina

Personalised recommendations