International Journal of Fuzzy Systems

, Volume 21, Issue 2, pp 468–487 | Cite as

Self-Organizing Recurrent Wavelet Fuzzy Neural Network-Based Control System Design for MIMO Uncertain Nonlinear Systems Using TOPSIS Method

  • Tuan-Tu Huynh
  • Tien-Loc Le
  • Chih-Min LinEmail author


The major objective of this study is to design an effective control algorithm for dealing with multiple-input–multiple-output uncertain nonlinear systems. Novelty advantages of the proposed method include: (1) The network has the maximum initial rules; it helps to increase the responsiveness of the system; (2) the network has two dynamic thresholds: One dynamic threshold is utilized to consider whether to retain or to delete the existing rules and the other is used for generating a new rule; (3) the fuzzy neural network-based system can automatically construct the network structure and adjust the parameters of the system; (4) the network uses multiple combination techniques, such as sliding mode control, adaptive control, recurrent unit, wavelet function, fuzzy logic, neural network, and technique for order of preference by similarity to ideal solution multi-criteria decision analysis method. Based on the advantages of the above techniques, a self-organizing recurrent wavelet fuzzy neural network control system is designed comprising a main controller and a robust compensator. The gradient descent method is used to online tune the parameters for the main controller, and a Lyapunov stability theorem is applied to guarantee the system’s stability. Finally, the proposed control system is applied to a nonlinear chaotic system, an inverted double-pendulum system, and an unmanned aerial vehicle motion control to verify the effectiveness of the proposed control scheme. The simulation results show that the proposed control scheme can achieve favorable control performance.


Self-organizing Recurrent wavelet Fuzzy neural network Nonlinear chaotic system Inverted double-pendulum system Unmanned aerial vehicle 


  1. 1.
    Zhang, H., Cui, Y., Wang, Y.: Hybrid fuzzy adaptive fault-tolerant control for a class of uncertain nonlinear systems with unmeasured states. IEEE Trans. Fuzzy Syst. 25(5), 1041–1050 (2017)CrossRefGoogle Scholar
  2. 2.
    Wu, L.-B., Yang, G.-H.: Adaptive output fuzzy fault accommodation for a class of uncertain nonlinear systems with multiple time delays. IEEE Trans. Fuzzy Syst. 26(2), 1052–1057 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gao, Y.-F., Sun, X.-M., Wen, C., Wang, W.: Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation. IEEE Trans. Autom. Control 62, 2498–2504 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Zouari, F., Boulkroune, A., Ibeas, A., Arefi, M.M.: Observer-based adaptive neural network control for a class of MIMO uncertain nonlinear time-delay non-integer-order systems with asymmetric actuator saturation. Neural Comput. Appl. 28, 993–1010 (2017)CrossRefGoogle Scholar
  5. 5.
    Li, H., Wang, J., Lam, H.-K., Zhou, Q., Du, H.: Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1654–1663 (2016)CrossRefGoogle Scholar
  6. 6.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  7. 7.
    Wang, Y., Xie, L., de Souza, C.E.: Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19(2), 139–149 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, S.-Y., Liu, F.-Y., Chou, J.-H.: Adaptive TSK fuzzy sliding mode control design for switched reluctance motor DTC drive systems with torque sensorless strategy. Appl. Soft Comput. 66, 278–291 (2018)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Shen, H., Karimi, H.R., Duan, D.: Dissipativity-based fuzzy integral sliding mode control of continuous-time T–S fuzzy systems. IEEE Trans. Fuzzy Syst. (2017). Google Scholar
  11. 11.
    Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)CrossRefGoogle Scholar
  12. 12.
    Tudoroiu, N., Elefterie, L., Tudoroiu, E.-R., Kecs, W., Dobritoiu, M., Ilias, N.: Real-time sliding mode observer estimator integration in hybrid electric vehicles battery management systems. In: Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology—ISAT 2016—Part III, pp. 15–28. Springer (2017)Google Scholar
  13. 13.
    Phoemphon, S., So-In, C., Niyato, D.T.: A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Appl. Soft Comput. 65, 101–120 (2018)CrossRefGoogle Scholar
  14. 14.
    Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural language commands to a robot control system. In: Experimental Robotics, pp. 403–415. Springer (2013)Google Scholar
  15. 15.
    De Medeiros, T.H., Rocha, H.P., Torres, F.S., Takahashi, R.H.C., Braga, A.P.: Multi-objective decision in machine learning. J. Control Autom. Electr. Syst. 28(2), 217–227 (2017)CrossRefGoogle Scholar
  16. 16.
    Kim, J., Kim, H., Kang, P.: Keystroke dynamics-based user authentication using freely typed text based on user-adaptive feature extraction and novelty detection. Appl. Soft Comput. 62, 1077–1087 (2018)CrossRefGoogle Scholar
  17. 17.
    Hajek, P.: Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based systems—a cross-region analysis. Appl. Soft Comput. 62, 73–85 (2018)CrossRefGoogle Scholar
  18. 18.
    Lin, D., Wang, X., Nian, F., Zhang, Y.: Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73(16), 2873–2881 (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Lu, Z., Qu, Y., Li, L., Wang, N.: Improving prediction performance of GPS satellite clock bias based on wavelet neural network. GPS Solut. 21(2), 523–534 (2017)CrossRefGoogle Scholar
  20. 20.
    Capizzi, G., Sciuto, G.L., Napoli, C., Tramontana, E.: An advanced neural network based solution to enforce dispatch continuity in smart grids. Appl. Soft Comput. 62, 768–775 (2018)CrossRefGoogle Scholar
  21. 21.
    Wei, Y., Park, J.H., Qiu, J., Wu, L., Jung, H.Y.: Sliding mode control for semi-Markovian jump systems via output feedback. Automatica 81, 133–141 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ganesan, S., Ramesh, V., Umashankar, S., Sanjeevikumar, P.: Fuzzy-based microgrid energy management system using interleaved boost converter and three-level NPC inverter with improved grid voltage quality. In: Advances in Smart Grid and Renewable Energy. pp. 325–337. Springer (2018)Google Scholar
  23. 23.
    Hafaifa, A., Laaouad, F., Laroussi, K.: A numerical structural approach to surge detection and isolation in compression systems using fuzzy logic controller. Int. J. Control Autom. Syst. 9(1), 69–79 (2011)CrossRefGoogle Scholar
  24. 24.
    Ullah, A.S., Noor-E-Alam, M.: Big data driven graphical information based fuzzy multi criteria decision making. Appl. Soft Comput. 63, 23–38 (2018)CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Gao, Y., Karimi, H.R., Shen, H., Fang, Z.: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Syst. Man Cybern. Syst. (2017). Google Scholar
  26. 26.
    Wei, Y., Qiu, J., Shi, P., Chadli, M.: Fixed-order piecewise-affine output feedback controller for fuzzy-affine-model-based nonlinear systems with time-varying delay. IEEE Trans. Circuits Syst. I Regul. Pap. 64(4), 945–958 (2017)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Xia, Y., Shen, H., Zhou, P.: SMC design for robust stabilization of nonlinear Markovian jump singular systems. IEEE Trans. Autom. Control 63(1), 219–224 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lin, C.-M., Le, T.-L.: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1362–1374 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wei, Y., Qiu, J., Karimi, H.R.: Fuzzy-affine-model-based memory filter design of nonlinear systems with time-varying delay. IEEE Trans. Fuzzy Syst. 26(2), 504–517 (2018)CrossRefGoogle Scholar
  30. 30.
    Macnab, C.: Modifying CMAC adaptive control with weight smoothing in order to avoid overlearning and bursting. Neural Comput. Appl. (2017). Google Scholar
  31. 31.
    Zhou, Q., Chao, F., Lin, C.-M.: A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization. Int. J. Fuzzy Syst. 20(2), 349–365 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu, T., Deng, Y., Chan, F.: Evidential supplier selection based on DEMATEL and game theory. Int. J. Fuzzy Syst. 20(4), 1321–1333 (2018)CrossRefGoogle Scholar
  33. 33.
    Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications: A State-of-The-Art Survey. Springer, Berlin (1981)zbMATHGoogle Scholar
  34. 34.
    Estay-Ossandon, C., Mena-Nieto, A., Harsch, N.: Using a fuzzy TOPSIS-based scenario analysis to improve municipal solid waste planning and forecasting: a case study of Canary archipelago (1999–2030). J. Clean. Prod. 176, 1198–1212 (2018)CrossRefGoogle Scholar
  35. 35.
    Liu, L., Liu, X., Pei, J., Fan, W., Pardalos, P.M.: A study on decision making of cutting stock with frustum of cone bars. Oper. Res. Int. J. 17(1), 187–204 (2017)CrossRefGoogle Scholar
  36. 36.
    Afsordegan, A., Sánchez, M., Agell, N., Zahedi, S., Cremades, L.V.: Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives. Int. J. Environ. Sci. Technol. 13(6), 1419–1432 (2016)CrossRefGoogle Scholar
  37. 37.
    İç, Y.T.: A TOPSIS based design of experiment approach to assess company ranking. Appl. Math. Comput. 227(Supplement C), 630–647 (2014)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Margain, L., Ochoa, A., Castillo, O., González, S., Gutiérrez, G.: Fuzzy TOPSIS method associated with improved selection of machines of high productivity. In: Distributed Computing and Artificial Intelligence, 13th International Conference, pp. 3–12. Springer (2016)Google Scholar
  39. 39.
    Liu, J., Wei, Q.: Risk evaluation of electric vehicle charging infrastructure public-private partnership projects in China using fuzzy TOPSIS. J. Clean. Prod. 189, 211–222 (2018)CrossRefGoogle Scholar
  40. 40.
    Lin, C.-M., Huynh, T.-T.: Function-link fuzzy cerebellar model articulation controller design for nonlinear chaotic systems using TOPSIS multiple attribute decision-making method. Int. J. Fuzzy Syst. (2018). MathSciNetGoogle Scholar
  41. 41.
    Rao, R.V.: Decision Making in The Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods. Springer, London (2007)zbMATHGoogle Scholar
  42. 42.
    Lee, L.-W., Li, I.-H.: Design and implementation of a robust FNN-based adaptive sliding-mode controller for pneumatic actuator systems. J. Mech. Sci. Technol. 30(1), 381–396 (2016)CrossRefGoogle Scholar
  43. 43.
    Huang, X., Yan, Y., Zhou, Y.: Neural network-based adaptive second order sliding mode control of Lorentz-augmented spacecraft formation. Neurocomputing 222, 191–203 (2017)CrossRefGoogle Scholar
  44. 44.
    Ma, X., Sun, F., Li, H., He, B.: Neural-network-based sliding-mode control for multiple rigid-body attitude tracking with inertial information completely unknown. Inf. Sci. 400–401, 91–104 (2017)CrossRefGoogle Scholar
  45. 45.
    Lin, F.-J., Chen, S.-G., Sun, I.-F.: Intelligent sliding-mode position control using recurrent wavelet fuzzy neural network for electrical power steering system. Int. J. Fuzzy Syst. 19(5), 1344–1361 (2017)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Lin, C.-M., Le, T.-L., Huynh, T.-T.: Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275, 2239–2250 (2018)CrossRefGoogle Scholar
  47. 47.
    Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., Wang, F.Y.: Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst. 99, 1–11 (2017). Google Scholar
  48. 48.
    El-Sousy, F.F., Abuhasel, K.A.: Self-organizing recurrent fuzzy wavelet neural network-based mixed H 2/H adaptive tracking control for uncertain two-axis motion control system. IEEE Trans. Ind. Appl. 52(6), 5139–5155 (2016)CrossRefGoogle Scholar
  49. 49.
    Wei, Y., Park, J.H., Karimi, H.R., Tian, Y.-C., Jung, H.: Improved stability and stabilization results for stochastic synchronization of continuous-time semi-Markovian jump neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2488–2501 (2018)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Shannon, C.E.: A mathematical theory of communication. Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982)zbMATHGoogle Scholar
  52. 52.
    Yu, Y., Zhang, S.: Adaptive backstepping synchronization of uncertain chaotic system. Chaos Solitons Fractals 21(3), 643–649 (2004)CrossRefzbMATHGoogle Scholar
  53. 53.
    Lin, C.-M., Li, H.-Y.: Self-organizing adaptive wavelet CMAC backstepping control system design for nonlinear chaotic systems. Nonlinear Anal. Real World Appl. 14(1), 206–223 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Kurfess, T.R.: Robotics and Automation Handbook. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  55. 55.
    Zhou, S., Feng, G., Feng, C.-B.: Robust control for a class of uncertain nonlinear systems: adaptive fuzzy approach based on backstepping. Fuzzy Sets Syst. 151(1), 1–20 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Lin, C.-M., Lin, H.Y.: TSK fuzzy CMAC-based robust adaptive backstepping control for uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 20(6), 1147–1154 (2012)CrossRefGoogle Scholar
  57. 57.
    Lin, C.-M., Tai, C.-F., Chung, C.-C.: Intelligent control system design for UAV using a recurrent wavelet neural network. Neural Comput. Appl. 24(2), 487–496 (2014)CrossRefGoogle Scholar
  58. 58.
    McLean, D.: Automatic Flight Control Systems. Prentice Hall, Englewood Cliffs (1990)zbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringYuan Ze UniversityTaoyüanTaiwan, ROC
  2. 2.Department of Electrical Electronic and Mechanical EngineeringLac Hong UniversityBien HoaVietnam

Personalised recommendations