Advertisement

International Journal of Fuzzy Systems

, Volume 20, Issue 4, pp 1385–1402 | Cite as

Use of Nonlinear Features for Automated Characterization of Suspicious Ovarian Tumors Using Ultrasound Images in Fuzzy Forest Framework

  • U. Rajendra AcharyaEmail author
  • Ayesha Akter
  • Pradeep Chowriappa
  • Sumeet Dua
  • U. Raghavendra
  • Joel E. W. Koh
  • Jen Hong Tan
  • Sook Sam Leong
  • Anushya Vijayananthan
  • Yuki Hagiwara
  • Marlina Tanty Ramli
  • Kwan Hoong Ng
Article

Abstract

Ovarian cancer is one of the prime causes of mortality in women. Diagnosis of ovarian cancer using ultrasonography is tedious as ovarian tumors exhibit minute clinical and structural differences between the suspicious and non-suspicious classes. Early prediction of ovarian cancer will reduce its growth rate and may save many lives. Computer-aided diagnosis (CAD) is a noninvasive method for finding ovarian cancer in its early stage which can avoid patient anxiety and unnecessary biopsy. This study investigates the efficacy of a novel CAD tool to characterize suspicious ovarian cancer using Radon-transformed nonlinear features. The obtained dimension of the extracted features is reduced using Relief-F feature selection method. In this study, we have employed the fuzzy forest-based ensemble classifier in contrast to the known crisp rule-based classifiers. The proposed method is evaluated using 469 (non-suspicious: 238, suspicious: 231) subjects and achieved a maximum 80.60 ± 0.5% accuracy, 81.40% sensitivity, 76.30% specificity with fuzzy forest, an ensemble fuzzy classifier using thirty-nine features. The proposed method is robust and reproducible as it uses maximum number subjects (469) as compared to state-of-the-art techniques. Hence, it can be used as an assisting tool by gynecologists during their routine screening.

Keywords

Ovarian cancer Releif-F Data complexity k-NN Fuzzy forest Random forest 

Supplementary material

40815_2018_456_MOESM1_ESM.pdf (6.2 mb)
Supplementary material 1 (PDF 6367 kb)

References

  1. 1.
    NIH, “Ovarian, fallopian tube, and primary peritoneal cancer prevention (PDQ®)–patient version.” Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK65937/ (2017)
  2. 2.
    Acharya, U.R., Molinari, F., Sree, S.V., Swapna, G., Saba, L., Guerriero, S., et al.: Ovarian tissue characterization in ultrasound: a review. Technol. Cancer Res. Treat. 14, 251–261 (2015)CrossRefGoogle Scholar
  3. 3.
    Acharya, U.R., Sree, S.V., Kulshreshtha, S., Molinari, F., Koh, J.E.W., Saba, L., et al.: GyneScan: an improved online paradigm for screening of ovarian cancer via tissue characterization. Technol. Cancer Res. Treat. 13, 529–539 (2014)CrossRefGoogle Scholar
  4. 4.
    Tan, T.Z., Quek, C., Ng, G.S., Razvi, K.: Ovarian cancer diagnosis with complementary learning fuzzy neural network. Artif. Intell. Med. 43, 207–222 (2008)CrossRefGoogle Scholar
  5. 5.
    Tang, K.-L., Li, T.-H., Xiong, W.-W., Chen, K.: Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data. BMC Bioinform. 11, 109 (2010)CrossRefGoogle Scholar
  6. 6.
    Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., et al.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359, 572–577 (2002)CrossRefGoogle Scholar
  7. 7.
    Assareh, A., Moradi, M.H.: Extracting efficient fuzzy if-then rules from mass spectra of blood samples to early diagnosis of ovarian cancer. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, 2007. CIBCB’07. pp. 502–506. (2007)Google Scholar
  8. 8.
    Meng, H., Hong, W., Song, J., Wang, L.: Feature extraction and analysis of ovarian cancer proteomic mass spectra. In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. pp. 668–671. (2008)Google Scholar
  9. 9.
    Biagiotti, R., Desii, C., Vanzi, E., Gacci, G.: Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US. Radiology 210, 399–403 (1999)CrossRefGoogle Scholar
  10. 10.
    Tailor, A., Jurkovic, D., Bourne, T., Collins, W., Campbell, S.: Sonographic prediction of malignancy in adnexal masses using multivariate logistic regression analysis. Ultrasound Obstet. Gynecol. 10, 41–47 (1997)CrossRefGoogle Scholar
  11. 11.
    Lucidarme, O., Akakpo, J.-P., Granberg, S., Sideri, M., Levavi, H., Schneider, A., et al.: A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study. Eur. Radiol. 20, 1822–1830 (2010)CrossRefGoogle Scholar
  12. 12.
    Zimmer, Y., Tepper, R., Akselrod, S.: An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans. Ultrasound Med. Biol. 29, 1561–1570 (2003)CrossRefGoogle Scholar
  13. 13.
    Acharya, U.R., Krishnan, M.M.R., Saba, L., Molinari, F., Guerriero, S., Suri, J.S.: Ovarian tumor characterization using 3D ultrasound. In: Saba, L., Acharya, U., Guerriero, S., Suri, J. (eds.) Ovarian Neoplasm Imaging, pp. 399–412. Springer, Boston, MA (2013)CrossRefGoogle Scholar
  14. 14.
    Acharya, U.R., Mookiah, M.R.K., Sree, S.V., Yanti, R., Martis, R., Saba, L., et al.: Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification. Ultraschall Medizin Eur. J. Ultrasound 35, 237–245 (2014)Google Scholar
  15. 15.
    Acharya, U.R., Sree, S.V., Saba, L., Molinari, F., Guerriero, S., Suri, J.S.: Ovarian tumor characterization and classification using ultrasound—a new online paradigm. J. Digit. Imaging 26, 544–553 (2013)CrossRefGoogle Scholar
  16. 16.
    Hata, T., Yanagihara, T., Hayashi, K., Yamashiro, C., Ohnishi, Y., Akiyama, M., et al.: Three-dimensional ultrasonographic evaluation of ovarian tumours: a preliminary study. Hum. Reprod. 14, 858–862 (1999)CrossRefGoogle Scholar
  17. 17.
    Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39, 355–368 (1987)CrossRefGoogle Scholar
  18. 18.
    Wang, X., Wong, B.S., Guan, T.C.: Image enhancement for radiography inspection. In: Proceedings of SPIE, pp. 462–468. (2004)Google Scholar
  19. 19.
    Radon, J.: On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5, 170–176 (1986)CrossRefGoogle Scholar
  20. 20.
    Venturas, S., Flaounas, I.: Study of Radon transformation and application of its inverse to NMR. Algorithms Mol. Biol. 4, (2005)Google Scholar
  21. 21.
    Jadhav, D.V., Holambe, R.S.: Feature extraction using Radon and wavelet transforms with application to face recognition. Neurocomputing 72, 1951–1959 (2009)CrossRefGoogle Scholar
  22. 22.
    Mandelbrot, B.B., Pignoni, R.: The Fractal Geometry of Nature, vol. 173. WH Freeman, New York (1983)Google Scholar
  23. 23.
    Verghese, G.C., Oppenheim, A.V.: Signals, Systems, and Inference. Pearson, London (2010)Google Scholar
  24. 24.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66, 026702 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203 (1992)CrossRefGoogle Scholar
  27. 27.
    Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)CrossRefGoogle Scholar
  28. 28.
    Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Acharya, U.R., Faust, O., Sree, V., Swapna, G., Martis, R.J., Kadri, N.A., Suri, J.S.: Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput. Methods Progr. Biomed. 113(1), 55–68 (2014)CrossRefGoogle Scholar
  30. 30.
    Acharya, U.R., Sree, S.V., Chattopadhyay, S., Suri, J.S.: Automated diagnosis of normal and alcoholic EEG signals. Int. J. Neural Syst. 22(3), 1250011 (2012)CrossRefGoogle Scholar
  31. 31.
    Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.W.: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl.-Based Syst. 88, 85–96 (2015)CrossRefGoogle Scholar
  32. 32.
    Acharya, R., Faust, O., Kadri, N.A., Suri, J.S., Yu, W.: Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput. Biol. Med. 43(10), 1523–1529 (2013)CrossRefGoogle Scholar
  33. 33.
    Chen, J., Li, G.: Tsallis wavelet entropy and its application in power signal analysis. Entropy 16, 3009–3025 (2014)CrossRefGoogle Scholar
  34. 34.
    Webber C.L. Jr, Zbilut, J. P.: Recurrence quantification analysis of nonlinear dynamical systems. Tutor. Contemp. Nonlinear Methods Behav. Sci. pp. 26–94 (2005)Google Scholar
  35. 35.
    Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on MACHINE LEARNING, pp. 249–256. (1992)Google Scholar
  36. 36.
    Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24, 289–300 (2002)CrossRefGoogle Scholar
  37. 37.
    Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the Wald–Wolfowitz and Smirnov two-sample tests. Ann. Stat. 7, 697–717 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hoekstra, A., Duin, R.P.: On the nonlinearity of pattern classifiers. In: Proceedings of the 13th International Conference on Pattern Recognition, 1996, pp. 271–275. (1996)Google Scholar
  39. 39.
    Larose, D.T.: Discovering Knowledge in Data: An Introduction to Data Mining. Wiley, Hoboken (2014)CrossRefzbMATHGoogle Scholar
  40. 40.
    Siddique, N., Adeli, H.: Neural Systems and Applications. Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, pp. 159–181Google Scholar
  41. 41.
    McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition, vol. 544. Wiley, Hoboken (2004)zbMATHGoogle Scholar
  42. 42.
    Sarkar, M.: Fuzzy-rough nearest neighbor algorithms in classification. Fuzzy Sets Syst. 158, 2134–2152 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Słowiński R. (ed.) Intelligent Decision Support. Theory and Decision Library (Series D: System Theory, Knowledge Engineering and Problem Solving), vol. 11, pp. 203–232. Springer, Dordrecht (1992)CrossRefGoogle Scholar
  44. 44.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  45. 45.
    Conn, D., Ngun, T., Gang, L., Ramirez, C.: Fuzzy Forests: Extending Random Forests for Correlated, High-Dimensional, Data. UCLA Biostatistics Working Paper Series. https://escholarship.org/uc/item/55h4h0w7 (2015)
  46. 46.
    Louppe, G.: Understanding Random Forests: From Theory to Practice. https://arxiv.org/abs/1407.7502 (2014)
  47. 47.
    Horvath, S.: Weighted Network Analysis Applications in Genomics and Systems Biology. Springer, New York (2011)CrossRefGoogle Scholar
  48. 48.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)zbMATHGoogle Scholar
  49. 49.
    Tan, J.H., Acharya, U.R., Bhandary, S.V., Chua, K.C., Sivaprasad, S.: Segementation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci. 20, 70–79 (2017)Google Scholar
  50. 50.
    Tan, J.H., Fujita, H., Sivaprasad, S., Bhandary, S.V., Rao, A.K., Chua, K.C., Acharya, U.R.: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 426, 66–76 (2017)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • U. Rajendra Acharya
    • 1
    • 2
    • 3
    Email author
  • Ayesha Akter
    • 4
  • Pradeep Chowriappa
    • 4
  • Sumeet Dua
    • 4
  • U. Raghavendra
    • 5
  • Joel E. W. Koh
    • 1
  • Jen Hong Tan
    • 1
  • Sook Sam Leong
    • 6
  • Anushya Vijayananthan
    • 6
  • Yuki Hagiwara
    • 1
  • Marlina Tanty Ramli
    • 8
  • Kwan Hoong Ng
    • 7
  1. 1.Department of Electronics and Computer EngineeringNgee Ann PolytechnicSingaporeSingapore
  2. 2.Department of Biomedical Engineering, School of Science and TechnologySUSS UniversitySingaporeSingapore
  3. 3.Department of Biomedical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  4. 4.Computer ScienceLouisiana Tech UniversityRustonUSA
  5. 5.Department of Instrumentation and Control Engineering, Manipal Institute of TechnologyManipal UniversityManipalIndia
  6. 6.Department of Biomedical Imaging, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  7. 7.University of Malaya Research Imaging Centre, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  8. 8.Medical Imaging Unit, Faculty of MedicineUiTMSungai BulohMalaysia

Personalised recommendations