International Journal of Fuzzy Systems

, Volume 21, Issue 2, pp 441–453 | Cite as

Intuitionistic Fuzzy Quantifier and Its Application in Feature Selection

  • Shivani Singh
  • Shivam ShreevastavaEmail author
  • Tanmoy Som
  • Pankhuri Jain


Nowadays, databases expand rapidly due to electronically generated information from different fields like bioinformatics, census data, social media, business transactions, etc. Hence, feature selection/attribute reduction in databases is necessary in order to reduce time, cost, storage and noise for better accuracy. For this purpose, the rough set theory has been played a very significant role, but this theory is inefficient in case of real-valued data set due to information loss through discretization process. Hybridization of rough set with intuitionistic fuzzy set successfully dealt with this issue, but it may radically change the outcome of the approximations by adding or ignoring a single element. To handle this situation, we reconsider the hybridization process by introducing intuitionistic fuzzy quantifiers into the idea of upper and lower approximations. Supremacy of intuitionistic fuzzy quantifier over VPRS and VQRS is presented with the help of some examples. A novel process for feature selection is given by using the degree of dependency approach with intuitionistic fuzzy quantifier-based lower approximation. A greedy algorithm along with two supportive examples is presented in order to demonstrate the proposed approach. Finally, proposed algorithm is implemented on some benchmark datasets and classification accuracies for different classifiers are compared.


Fuzzy set Rough set VPRS VQRS Intuitionistic fuzzy quantifier 



First author would like to thank the Research Foundation-CSIR for funding her research.


  1. 1.
    Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131–156 (1997)CrossRefGoogle Scholar
  2. 2.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, Hoboken (2012)zbMATHGoogle Scholar
  3. 3.
    Langley, P.: Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance, vol. 184, pp. 245–271 (1994)Google Scholar
  4. 4.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)CrossRefzbMATHGoogle Scholar
  5. 5.
    Pawlak, Z., Sets, R.: Theoretical aspects of reasoning about data. Kluwer, Netherlands (1991)Google Scholar
  6. 6.
    Hu, Q., Yu, D., Liu, J., Wu, C.: Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 178(18), 3577–3594 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zadeh, L.A.: Information and control. Fuzzy Sets 8(3), 338–353 (1965)Google Scholar
  9. 9.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3), 191–209 (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Słowiński R. (ed.) Intelligent Decision Support, pp. 203–232. Springer, Dordrecht (1992)CrossRefGoogle Scholar
  11. 11.
    Jensen, R., Shen, Q.: Fuzzy–rough attribute reduction with application to web categorization. Fuzzy Sets Syst. 141(3), 469–485 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches, vol. 8. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  13. 13.
    Hu, Q., Yu, D., Xie, Z.: Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognit. Lett. 27(5), 414–423 (2006)CrossRefGoogle Scholar
  14. 14.
    Zhao, S., Tsang, E.C., Chen, D., Wang, X.: Building a rule-based classifier—a fuzzy-rough set approach. IEEE Trans. Knowl. Data Eng. 22(5), 624–638 (2010)CrossRefGoogle Scholar
  15. 15.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cornelis, C., De Cock, M., Radzikowska, A.M.: Vaguely quantified rough sets. In: International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, pp. 87–94. Springer, Berlin (2007)Google Scholar
  17. 17.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9(1), 149–184 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nanda, S., Majumdar, S.: Fuzzy rough sets. Fuzzy Sets Syst. 45(2), 157–160 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chakrabarty, K., Gedeon, T., Koczy, L.: Intuitionistic fuzzy rough set. In: Proceedings of 4th Joint Conference on Information Sciences (JCIS), Durham, NC, pp. 211–214 (1998)Google Scholar
  21. 21.
    Jena, S.P., Ghosh, S.K., Tripathy, B.K.: Intuitionistic fuzzy rough sets. Notes Intuitionistic Fuzzy Sets 8(1), 1–18 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Samanta, S.K., Mondal, T.K.: Intuitionistic fuzzy rough sets and rough intuitionistic fuzzy sets. J. Fuzzy Math. 9(3), 561–582 (2001)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, Y., Lin, Y.: Intuitionistic fuzzy rough set model based on conflict distance and applications. Appl. Soft Comput. 31, 266–273 (2015)CrossRefGoogle Scholar
  24. 24.
    Cornelis, C., De Cock, M., Kerre, E.E.: Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge. Expert Syst. 20(5), 260–270 (2003)CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Lin, Y., Zhao, H.H.: Variable precision intuitionistic fuzzy rough set model and applications based on conflict distance. Expert Syst. 32(2), 220–227 (2015)CrossRefGoogle Scholar
  26. 26.
    Gong, Z., Zhang, X.: Variable precision intuitionistic fuzzy rough sets model and its application. Int. J. Mach. Learn. Cybern. 5(2), 263–280 (2014)CrossRefGoogle Scholar
  27. 27.
    Huang, B., Zhuang, Y.L., Li, H.X., Wei, D.K.: A dominance intuitionistic fuzzy-rough set approach and its applications. Appl. Math. Model. 37(12–13), 7128–7141 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lu, Y.L., Lei, Y.J., Hua, J.X.: Attribute reduction based on intuitionistic fuzzy rough set. Control Decis. 3, 003 (2009)MathSciNetGoogle Scholar
  29. 29.
    Chen, H., Yang, H.C.: One new algorithm for intuitionistic fuzzy-rough attribute reduction. J. Chin. Comput. Syst. 32(3), 506–510 (2011)Google Scholar
  30. 30.
    Esmail, H., Maryam, J., Habibolla, L.: Rough set theory for the intuitionistic fuzzy information. Syst. Int. J. Mod. Math. Sci. 6(3), 132–143 (2013)Google Scholar
  31. 31.
    Huang, B., Li, H.X., Wei, D.K.: Dominance-based rough set model in intuitionistic fuzzy information systems. Knowl. Based Syst. 28, 115–123 (2012)CrossRefGoogle Scholar
  32. 32.
    Tiwari, A.K., Shreevastava, S., Som, T., Shukla, K.K.: Tolerance-based intuitionistic fuzzy-rough set approach for attribute reduction. Expert Syst. Appl. 101, 205–212 (2018)CrossRefGoogle Scholar
  33. 33.
    Shreevastava, S., Tiwari, A.K., Som, T.: Intuitionistic fuzzy neighborhood rough set model for feature selection. Int. J. Fuzzy Syst. Appl. (IJFSA) 7(2), 75–84 (2018)CrossRefGoogle Scholar
  34. 34.
    Tiwari, A.K., Shreevastava, S., Shukla, K.K., Subbiah, K.: New approaches to intuitionistic fuzzy-rough attribute reduction. J. Intell. Fuzzy Syst. 34(5), 3385–3394 (2018)CrossRefGoogle Scholar
  35. 35.
    Atanassov, K.T.: Intuitionistic fuzzy sets. In: Intuitionistic Fuzzy Sets, pp. 1–137. Physica, Heidelberg (1999)Google Scholar
  36. 36.
    Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy linguistic quantifiers. Notes IFS 3(5), 111–122 (1998)Google Scholar
  37. 37.
    Cui, L., Li, Y., Zhang, X.: Intuitionistic fuzzy linguistic quantifiers based on intuitionistic fuzzy-valued fuzzy measures and integrals. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17(03), 427–448 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Atanassov, K., Georgiev, I., Szmidt, E., Kacprzyk, J.: Multidimensional intuitionistic fuzzy quantifiers. In: 2016 IEEE 8th International Conference on Intelligent Systems (IS), pp. 530–534. IEEE (2016)Google Scholar
  39. 39.
    Atanassov, K., Georgiev, I., Szmidt, E., Kacprzyk, J.: Multidimensional intuitionistic fuzzy quantifiers and level operators. In: Learning Systems: From Theory to Practice, pp. 267–280. Springer, Cham (2018)Google Scholar
  40. 40.
    Grzegrorzewski, P.: The hamming distance between intuitionistic fuzzy sets. In: Proceedings of the 10th IFSA World Congress, Istanbul, Turkey, vol. 30, pp. 35–38 (2003)Google Scholar
  41. 41.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118(3), 467–477 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Vlachos, I.K., Sergiadis, G.D.: Subsethood, entropy, and cardinality for interval-valued fuzzy sets—an algebraic derivation. Fuzzy Sets Syst. 158(12), 1384–1396 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Huang, S.Y. (ed.): Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, vol. 11. Springer, Berlin (1992)Google Scholar
  44. 44.
    Huang, B., Zhuang, Y.L., Li, H.X., Wei, D.K.: A dominance intuitionistic fuzzy-rough set approach and its applications. Appl. Math. Model. 37(12–13), 7128–7141 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Blake, C.L.: UCI repository of machine learning databases, Irvine. University of California. (1998). Accessed 12 Oct 2018

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  • Shivani Singh
    • 1
  • Shivam Shreevastava
    • 2
    Email author
  • Tanmoy Som
    • 2
  • Pankhuri Jain
    • 2
  1. 1.DST-Centre for Interdisciplinary Mathematical Sciences, Institute of ScienceBHUVaranasiIndia
  2. 2.Department of Mathematical SciencesIIT (BHU)VaranasiIndia

Personalised recommendations