International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1406–1416 | Cite as

Relaxed Controller Design Conditions for Takagi–Sugeno Systems with State Time-Varying Delays

  • Fayçal Bourahala
  • Kevin Guelton
  • Noureddine Manamanni
  • Farid Khaber
Article

Abstract

This paper deals with the design of fuzzy controllers for Takagi–Sugeno (T-S) fuzzy models with state time-varying delays. New relaxed delay-dependent conditions for the stabilization purpose are proposed in terms of linear matrix inequalities (LMIs), including the knowledge of the bounds of the time-varying delay and its rate of variation. The conservatism improvement is brought through three points: (1) the choice of a convenient augmented Lyapunov–Krasovskii functional candidate, (2) the application of an extension of the Jensen’s inequality, and (3) the Finsler’s lemma. In this context, a parallel distributed compensation control law, which includes both memoryless and delayed state feedbacks, is considered. To apply such control law, it is required to assume that the time-varying delay is available online. Under this assumption, it is highlighted that the proposed LMI-based conditions are significantly relaxed for high rate of variation of the time delay. On the other hand, when this assumption cannot be guaranteed, straightforward corollaries are proposed. A numerical example is provided to illustrate the effectiveness of the proposed LMI-based conditions and their conservatism improvement regarding to previous results.

Keywords

Takagi–Sugeno (T-S) models Time-varying delay Delay-dependent controller design Lyapunov–Krasovksii functional (LKF) Linear matrix inequalities (LMIs) 

References

  1. 1.
    An, J., Li, T., Wen, G., Li, R.: New stability conditions for uncertain ts fuzzy systems with interval time-varying delay. Int. J. Control Autom. Syst. 10(3), 490–497 (2012)CrossRefGoogle Scholar
  2. 2.
    An, J., Wen, G.: Improved stability criteria for time-varying delayed t-s fuzzy systems via delay partitioning approach. Fuzzy Sets Syst. 185(1), 83–94 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bouarar, T., Guelton, K., Manamanni, N.: Lmi based h\(\infty\) controller design for uncertain takagi-sugeno descriptors subject to external disturbances. IFAC Proc. Vol. 40(21), 49–54 (2007)CrossRefGoogle Scholar
  4. 4.
    Bouarar, T., Guelton, K., Manamanni, N.: Robust non-quadratic static output feedback controller design for takagi-sugeno systems using descriptor redundancy. Eng. Appl. Artif. Intell. 26(2), 739–756 (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Bourahala, F., Guelton, K., Khaber, F., Manamanni, N.: Improvements on pdc controller design for takagi-sugeno fuzzy systems with state time-varying delays. IFAC-PapersOnLine 49(5), 200–205 (2016)CrossRefGoogle Scholar
  6. 6.
    Cao, Y.Y., Frank, P.M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)CrossRefGoogle Scholar
  7. 7.
    Chadli, M., Guerra, T.M.: Lmi solution for robust static output feedback control of discrete takagi-sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 20(6), 1160–1165 (2012)CrossRefGoogle Scholar
  8. 8.
    Chen, A., Wang, J.: Delay-dependent l2-linf control of linear systems with multiple time-varying state and input delays. Nonlinear Anal. Real World Appl. 13(1), 486–496 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cherifi, A., Guelton, K., Arcese, L.: Quadratic design of d-stabilizing non-pdc controllers for quasi-lpv/ts models. IFAC-PapersOnLine 48(26), 164–169 (2015)CrossRefGoogle Scholar
  10. 10.
    Gahinet, P., Apkarian, P., Chilali, M.: Affine parameter-dependent lyapunov functions and real parametric uncertainty. IEEE Trans. Autom. Control 41(3), 436–442 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gassara, H., El Hajjaji, A., Chaabane, M.: Robust control of t-s fuzzy systems with time-varying delay using new approach. Int. J. Robust Nonlinear Control 20(14), 1566–1578 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    González, T., Márquez, R., Bernal, M., Guerra, T.M.: Nonquadratic controller and observer design for continuous ts models: a discrete-inspired solution. Int. J. Fuzzy Syst. 18(1), 1–14 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gu, K., Chen, J., Kharitonov, V.L.: Stability of Time-delay Systems. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  14. 14.
    Guerra, T.M., Estrada-Manzo, V., Lendek, Z.: Observer design for takagi-sugeno descriptor models: an LMI approach. Automatica 52, 154–159 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jaadari, A., Guerra, T.M., Sala, A., Bernal, M.: Finsler’s relaxation for local h-infinity controller design of continuous-time takagi-sugeno models via non-quadratic lyapunov functions. Am. Control Conf. 2013, 5648–5653 (2013)Google Scholar
  16. 16.
    Jaadari, A., Guerra, T.M., Sala, A., Bernal, M., Guelton, K.: New controllers and new designs for continuous-time takagi-sugeno models. In: IEEE International Conference on Fuzzy Systems, pp. 1–7 (2012)Google Scholar
  17. 17.
    Lendek, Z., Guerra, T.M., Lauber, J.: Controller design for ts models using delayed nonquadratic lyapunov functions. IEEE Trans. Cybern. 45(3), 439–450 (2015)CrossRefGoogle Scholar
  18. 18.
    Li, L., Liu, X.: New approach on robust stability for uncertain t-s fuzzy systems with state and input delays. Chaos, Solitons Fractals 40(5), 2329–2339 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Li, L., Liu, X.: New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays. Inf. Sci. 179(8), 1134–1148 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Oliveira, R.C., De Oliveira, M.C., Peres, P.L.: Robust state feedback LMI methods for continuous-time linear systems: Discussions, extensions and numerical comparisons. In: IEEE International Symposium on Computer-Aided Control System Design (2011)Google Scholar
  21. 21.
    Peng, C., Fei, M.R.: An improved result on the stability of uncertain t-s fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 212, 97–109 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Peng, C., Tian, Y.C., Tian, E.: Improved delay-dependent robust stabilization conditions of uncertain t-s fuzzy systems with time-varying delay. Fuzzy Sets Syst. 159(20), 2713–2729 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Peng, C., Yue, D., Yang, T.C., Tian, E.G.: On delay-dependent approach for robust stability and stabilization of ts fuzzy systems with constant delay and uncertainties. IEEE Trans. Fuzzy Syst. 17(5), 1143–1156 (2009)CrossRefGoogle Scholar
  24. 24.
    Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sala, A.: On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annu. Rev. Control 33(1), 48–58 (2009)CrossRefGoogle Scholar
  26. 26.
    Schulte, H., Guelton, K.: Descriptor modelling towards control of a two link pneumatic robot manipulator: AT–S multimodel approach. Nonlinear Anal. Hybrid Syst. 3(2), 124–132 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Skelton, R., Iwasaki, T., Grigoriadis, K.: A Unified Algebraic Approach to Linear Control Design. Taylor and Francis, London (1998)Google Scholar
  28. 28.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)CrossRefMATHGoogle Scholar
  29. 29.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, Hoboken (2001)CrossRefGoogle Scholar
  30. 30.
    Tian, E., Yue, D., Zhang, Y.: Delay-dependent robust h control for t-s fuzzy system with interval time-varying delay. Fuzzy Sets Syst. 160(12), 1708–1719 (2009)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Tsai, S.H., Chen, Y.A., Lo, J.C.: A novel stabilization condition for a class of t-s fuzzy time-delay systems. Neurocomputing 175, 223–232 (2016)CrossRefGoogle Scholar
  32. 32.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)CrossRefGoogle Scholar
  33. 33.
    Wang, R.J., Lin, W.W., Wang, W.J.: Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(2), 1288–1292 (2004)CrossRefGoogle Scholar
  34. 34.
    Wu, H.N., Li, H.X.: New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 15(3), 482–493 (2007)CrossRefGoogle Scholar
  35. 35.
    Yoneyama, J.: New delay-dependent approach to robust stability and stabilization for takagi-sugeno fuzzy time-delay systems. Fuzzy Sets Syst. 158(20), 2225–2237 (2007)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Yoneyama, J.: Robust stability and stabilization for uncertain takagi-sugeno fuzzy time-delay systems. Fuzzy Sets Syst. 158(2), 115–134 (2007)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zeng, H.B., Park, J.H., Xia, J.W., Xiao, S.P.: Improved delay-dependent stability criteria for t-s fuzzy systems with time-varying delay. Appl. Math. Comput. 235, 492–501 (2014)MathSciNetMATHGoogle Scholar
  38. 38.
    Zerar, M., Guelton, K., Manamanni, N.: Linear fractional transformation based h-infinity output stabilization for takagi-sugeno fuzzy models. Mediterr. J. Meas. Control 4(3), 111–121 (2008)Google Scholar
  39. 39.
    Zhang, Z., Lin, C., Chen, B.: New stability and stabilization conditions for t-s fuzzy systems with time delay. Fuzzy Sets Syst. 263, 82–91 (2015)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Zhao, L., Gao, H., Karimi, H.R.: Robust stability and stabilization of uncertain ts fuzzy systems with time-varying delay: an input.output approach. IEEE Trans. Fuzzy Syst. 21(5), 883–897 (2013)CrossRefGoogle Scholar
  41. 41.
    Zhao, Y., Gao, H., Lam, J., Du, B.: Stability and stabilization of delayed t-s fuzzy systems: a delay partitioning approach. IEEE Trans. Fuzzy Syst. 17(4), 750–762 (2009)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CReSTIC EA3804 University of Reims Champagne-ArdenneReims CedexFrance
  2. 2.QUERE Laboratory, Engineering FacultyUniversity of Setif 1SetifAlgeria

Personalised recommendations