Advertisement

International Journal of Fuzzy Systems

, Volume 18, Issue 6, pp 980–989 | Cite as

A Novel Fuzzy Logic Model for Pseudo-Relevance Feedback-Based Query Expansion

  • Jagendra Singh
  • Mukesh PrasadEmail author
  • Om Kumar Prasad
  • Er Meng Joo
  • Amit Kumar Saxena
  • Chin-Teng Lin
Article

Abstract

In this paper, a novel fuzzy logic-based expansion approach considering the relevance score produced by different rank aggregation approaches is proposed. It is well known that different rank aggregation approaches yield different relevance scores for each term. The proposed fuzzy logic approach combines different weights of each term by using fuzzy rules to infer the weights of the additional query terms. Experimental results demonstrate that the proposed approach achieves significant improvement over individual expansion, aggregated and other related state-of-the-arts methods.

Keywords

Fuzzy logic Rank aggregation Query expansion Pseudo relevance feedback Information retrival 

Notes

Acknowledgments

The authors would like to acknowledge the funding support from the ministry of education, Singapore (tier 1 acrf, rg29/15).

References

  1. 1.
    Berardi, M., Lapi, M., Leo, P., Malerba,D., Marinelli, C., Scioscia, G.: A data mining approach to pubmed query refinement. In: Proceedings of the 15th International Workshop on Database and Expert Systems Applications, Zaragoza, Spain, pp. 401–405 (2004)Google Scholar
  2. 2.
    Chen, H., Yu, J.X., Furuse, K., Ohbo, N.: Support IR query refinement by partial keyword set. In: Proceedings of the Second International Conference on Web Information Systems Engineering, Singapore, vol. 1, pp. 245–253 (2001)Google Scholar
  3. 3.
    Chang, Y.C., Chen, S.M., Liau, C.J.: A new query expansion method based on fuzzy rules. In: Proceedings of the Seventh Joint Conference on AI, Fuzzy System, and Grey System, Taipei, Taiwan, Republic of China (2003)Google Scholar
  4. 4.
    Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In: Proceedings of the 11th International Conference on World Wide Web, Honolulu, Hawaii, pp. 325–332 (2002)Google Scholar
  5. 5.
    Jin, Q., Zhao, J., Xu, B.: Query expansion based on term similarity tree model. In: Proceedings of the 2003 International Conference on Natural Language Processing and Knowledge Engineering, Beijing, China, pp. 400–406 (2003)Google Scholar
  6. 6.
    Kim, B.M., Kim, J.Y., Kim, J.: Query term expansion and reweighting using term co-occurrence similarity and fuzzy inference. Proceedings of the Joint Ninth IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, vol. 2, pp. 715–720 (2001)Google Scholar
  7. 7.
    Latiri, C.C., Elloumi, S., Chevallet, J.P., Jaoua, A.: Extension of fuzzy Galois connection for information retrieval using a fuzzy quantifier. In: Proceedings of the 2003 ACS/IEEE International Conference on Computer Systems and Applications, Tunis, Tunisia (2003)Google Scholar
  8. 8.
    Lin, H.C., Wang, L.H., Chen, S.M.: A new query expansion method for document retrieval by mining additional query terms. In: Proceedings of the 2005 International Conference on Business and Information, Hong Kong, China (2005)Google Scholar
  9. 9.
    Wu, M.S.: Modeling query-document dependencies with topic language models for information retrieval. Inf. Sci. 312, 1–12 (2015)CrossRefGoogle Scholar
  10. 10.
    Pedronette, D.C.G., Almeida, J., Torres, R.D.: A scalable re-ranking method for content-based image retrieval. Inf. Sci. 265, 91–104 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Singh, J., Sharan, A.: Context window based co-occurrence approach for improving feedback based query expansion in information retrieval. Int. J. Inf. Retr. Res. 5(4), 31–45 (2015)MathSciNetGoogle Scholar
  12. 12.
    Singh, J., Sharan, A.: Co-occurrence and semantic similarity based hybrid approach for improving automatic query expansion in information retrieval. LNCS, vol. 8956, pp. 415–418. Springer, Berlin (2015)Google Scholar
  13. 13.
    Prasad, M., Li, D.L., Lin, C.T., Prakash, S., Singh, J., Joshi, S.: Designing mamdani-type fuzzy reasoning for visualizing prediction problems based on collaborative fuzzy clustering. IAENG Int. J. Comput. Sci. 42(4), 404–411 (2015)Google Scholar
  14. 14.
    Gupta, Y., Saini, A., Saxena, A.K.: A new fuzzy logic based ranking function for efficient information retrieval system. Expert Syst. Appl. 42(3), 1223–1234 (2015)CrossRefGoogle Scholar
  15. 15.
    Chen, S.M., Randyanto, Y., Cheng, S.H.: Fuzzy queries processing based on intuitionistic fuzzy social relational networks. Inf. Sci. 327, 110–124 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bade, Y., Bhat, R., Borate, P.: Optimization techniques for improving the performance of the information retrieval system. Int. J. Res. Advent Technol. 2(2), 263–267 (2014)Google Scholar
  17. 17.
    Thompson, K.C.: Reducing the risk of query expansion via robust constrained optimization. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, CIKM’09, New York, NY, USA, pp. 837–846 (2009)Google Scholar
  18. 18.
    Raman, K., Udupa, R., Bhattacharyya, P., Bhole, A.: On improving pseudo-relevance feedback using pseudo-irrelevant documents. In: ECIR, pp. 573–576 (2010)Google Scholar
  19. 19.
    White, R.W., Marchionini, G.: Examining the effectiveness of real-time query expansion. In: Information Processing and Management, pp. 43, no. 3, pp. 685–704 (2007)Google Scholar
  20. 20.
    Ye, Z., Huang, J.X., Lin, H.: Finding a good query-related topic for boosting pseudo-relevance feedback. J. Am. Soc. Inf. Sci. Technol. 62(4), 748–760 (2011)CrossRefGoogle Scholar
  21. 21.
    Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)Google Scholar
  22. 22.
    Rijsbergen, C.J.V.: A theoretical basis for the use of co-occurrence data in information retrieval. J. Doc. 33(2), 106–119 (1977)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Luo, C., Chung, S.M.: Text clustering with feature selection by using statistical data. IEEE Trans. Knowl. Data Eng. 20(5), 641–652 (2008)CrossRefGoogle Scholar
  24. 24.
    Aguera, J.R.P., Araujo, L.: Comparing and combining methods for automatic query expansion. Adv. Nat. Lang. Process. Appl. Res. Comput. Sci. 33, 177–188 (2008)Google Scholar
  25. 25.
    Robertson, S.E.: On term selection for query expansion. J. Doc. 46(4), 359–364 (1990)CrossRefGoogle Scholar
  26. 26.
    Rogati, M., Yang, Y.: High-performing feature selection for text classification. In: Proceedings of the 11th ACM International Conference on Information and Knowledge Management, pp. 659–661 (2002)Google Scholar
  27. 27.
    Fox, E.A., Shaw, J.A.: Combination of multiple searches. In Proceedings of the 2nd Text Retrieval Conference, pp. 243–252 (1994)Google Scholar
  28. 28.
    Wei, Z., Gao, W., Ganainy, T.E., Magdy, W., Wong, K.F.: Ranking model selection and fusion for effective micro blog search. In: proceedings of the 1st International Workshop on Social Media Retrieval and Analysis, pp. 21–26 (2014)Google Scholar
  29. 29.
    Miao, J., Huang, X., Ye, Z.: Proximity-based rocchio’s model for pseudo relevance feedback. In Proceedings of 35th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 534–544 (2012)Google Scholar
  30. 30.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7, 1–13 (1975)CrossRefzbMATHGoogle Scholar
  31. 31.
    Lee, C.: Fuzzy logic in control systems: fuzzy logic controller, Parts I and II. IEEE Trans. Syst. Man Cybern. 20, 404–435 (1990)CrossRefzbMATHGoogle Scholar
  32. 32.
    The MathWorks Inc.: MATLAB the Language of Technical Computing: Function Reference, vol. 1: A-E version 7. The MathWorks, Inc., Natick (2004)Google Scholar
  33. 33.
    Diaz, F., Metzler, D.: Improving the estimation of relevance models using large external corpora. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 154–161 (2006)Google Scholar
  34. 34.
    Robertson, S.E., Walker, S., Jones, S., Beaulieu, M.M.H., Gatford, M.: Okapi at TREC-3. In: Proceedings of the Third Text REtrieval Conference, pp. 109–126 (1995)Google Scholar
  35. 35.
    Singh, J., Sharan, A.: Relevance feedback based query expansion model using borda count and semantic similarity approach. In: Computational Intelligence and Neuroscience, pp. 1–17 (2015)Google Scholar
  36. 36.
    Tomiye, A.C., Samuel, A.B., Ijesunor, A.B., Udo, I.: A fuzzy-ontology based information retrieval system for relevance feedback. Int. J. Comput. Sci. Issues 18(1), 382–389 (2011)Google Scholar
  37. 37.
    Parapar, J., Quindimil, M.A.P., Barreiro, A.: Score distributions for pseudo relevance feedback. Inf. Sci. 273, 171–181 (2014)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jagendra Singh
    • 1
  • Mukesh Prasad
    • 2
    Email author
  • Om Kumar Prasad
    • 3
  • Er Meng Joo
    • 4
  • Amit Kumar Saxena
    • 5
  • Chin-Teng Lin
    • 6
  1. 1.School of Computer Systems and SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.International College of Semiconductor TechnologyNational Chiao Tung UniversityHsinchuTaiwan
  4. 4.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  5. 5.Department of Computer Science and ITGuru Ghasidas UniversityBilaspurIndia
  6. 6.Department of Electrical EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations