Advertisement

International Journal of Fuzzy Systems

, Volume 19, Issue 1, pp 167–178 | Cite as

Fuzzy Slope Adaptation for the Sliding Mode Control of a Pneumatic Parallel Platform

  • Pablo J. Prieto
  • Nohe R. Cazarez-Castro
  • Luis T. Aguilar
  • Dianelis Garcia
Article

Abstract

An alternative of fuzzy-based sliding mode control is reported in this paper so as to reduce chattering for a two degrees-of-freedom (2-DOF) platform driven by electro-pneumatic actuators. According to surface function values, a Mamdani fuzzy inference system is introduced to change the control action over the actuators and the slope of sliding surface to minimize chattering. In addition, although pneumatic actuators present high nonlinearities, experimental results are reported with attenuation of chattering and convergence toward the reference, in spite of the existence trade off between accuracy and system behavior for sliding mode controller.

Keywords

Chattering Fuzzy system Pneumatic actuator Position control Sliding surface 

List of Symbols

ε

Boundary layer (m/s2)

λ

Slope of sliding surface (s−1)

A1

Inferior area of the chamber (m2)

A2

Superior area of the chamber (m2)

Ae

Valve orifice area (m2)

Av

Cylinder rod transversal section (m2)

Ff

Friction force (N)

Kp

Gain of the pneumatic plant.

M

Mass (kg)

PA

Atmospheric pressure (m2)

Pa

Output pressure (Pa)

Ps

Input pressure (Pa)

Qm

Air mass flow (kg/s)

R

Perfect gas constant related to unit mass (J/kg/°K)

s

Seconds

T

Temperature (°K)

u(t)

Control action

v

Velocity of the piston (m/s)

V1

Volume of the inferior chamber (m3)

V2

Volume of the superior chamber (m3)

y

Cylinder piston displacement (m)

s(e)

Sliding surface function (m/s2)

Notes

Acknowledgments

The authors thank the suggestions of Dr. Xavier Brun, of the Institut National des Sciences Appliques de Lyon, France. The authors gratefully acknowledge the anonymous reviewers whose comments strengthened the paper.

Funding

This paper have been partially funded by Tecnologico Nacional de Mexico under Grants 5424.14-P, 5424.14.15-PR, and 5627.15-P.

References

  1. 1.
    Abdelsalam, M.M., Areed, M.F.: Decoupled fuzzy sliding mode control for a synchronous motor speed control. Int. J. Comput. Appl. 47, 29–35 (2012)Google Scholar
  2. 2.
    Amer, A.F., Sallam, E.A., Elawady, W.M.: Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 dof planar robot manipulators. Appl. Soft Comput. 11, 4943–4953 (2011)CrossRefGoogle Scholar
  3. 3.
    Beyhan, S.: Adaptive fuzzy terminal sliding-mode observer with experimental applications. Int. J. Fuzzy Syst. 62, 1–10 (2013)MathSciNetGoogle Scholar
  4. 4.
    Boldbaatar, E.-A., Lin, C.-M.: Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int. J. Fuzzy Syst. 17, 31–38 (2015)CrossRefGoogle Scholar
  5. 5.
    Brun, X., Belgharbi, M., Sesmat, S., Thomasset, D., Scavarda, S.: Control of an electropneumatic actuator: comparison between some linear and non-linear control laws. Proc. Inst. Mech. Eng., Part I 213, 387–406 (1999)Google Scholar
  6. 6.
    Burrows, C.R.: Fluid Power Servomechanisms. Van Nostrand, London (1972)Google Scholar
  7. 7.
    Cao, L., Sheng, T., & Chen, X.: A non-singular terminal adaptive fuzzy sliding-mode controller. In Proceedings of the IEEE Digital Manufacturing and Automation Conference. IEEE, pp. 74–80 (2011)Google Scholar
  8. 8.
    Chang, M.-K.: An adaptive self-organizing fuzzy sliding mode controller for a 2-dof rehabilitation robot actuated by pneumatic muscle actuators. Control Eng. Pract. 18, 13–22 (2010)CrossRefGoogle Scholar
  9. 9.
    Chang, Y.-H., Yang, C.-Y., Chan, W.-S., Lin, H.-W., Chang, C.-W.: Adaptive fuzzy sliding-mode formation controller design for multi-robot dynamic systems. Int. J. Fuzzy Syst. 16, 121 (2014)Google Scholar
  10. 10.
    Chettouh, M., Toumi, R., Hamerlain, M.: High-order sliding modes for a robot driven by pneumatic artificial rubber muscles. Adv. Robot. 22, 689–704 (2008)CrossRefGoogle Scholar
  11. 11.
    Fridman, L., Levant, A.: Sliding Mode Control in Engineering, vol. 3. Marcel Dekker, Inc., New York (2002)zbMATHGoogle Scholar
  12. 12.
    Girin, A., Plestan, F., Brun, X., Glumineau, A., & Smaoui, M.: High gain and sliding mode observers for the control of an electropneumatic actuator. In Proceedings of the IEEE International Conference on Control Application, pp. 3128–3133 (2006)Google Scholar
  13. 13.
    Glumineau, A., Fridman, L., Plestan, F.: Variable structure systems techniques in applications vss/smc. Control Eng. Pract. 21, 669–670 (2013)CrossRefGoogle Scholar
  14. 14.
    Islam, S., Liu, P.X.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58, 2444–2453 (2011)CrossRefGoogle Scholar
  15. 15.
    ISO-6358.: Pneumatic fluid power—Components using compressible fluids—Determinations of flow-rate characteristics (1989)Google Scholar
  16. 16.
    Kim, S.-W., Lee, J.-J.: Design of a fuzzy controller with fuzzy sliding surface. Fuzzy Sets Syst. 71, 359–367 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Korondi, P., & Gyeviki, J.: Robust position control for a pneumatic cylinder. In Proceedings of the IEEE Power Electronics and Motion Control Conference, pp. 513–518 (2006)Google Scholar
  18. 18.
    Krivts, I.L., Krejnin, G.V.: Pneumatic Actuating Systems for Automatic Equipment: structure and Design. Taylor & Francis Group, New York (2006)CrossRefGoogle Scholar
  19. 19.
    Laghrouche, S., Liu, J., Ahmed, F.S., Harmouche, M., Wack, M.: Adaptive second-order sliding mode observer-based fault reconstruction for pem fuel cell air-feed system. IEEE Trans. Control Syst. Technol. 23, 1098–1109 (2015)CrossRefGoogle Scholar
  20. 20.
    Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43, 531–537 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, H., Gao, H., Shi, P., Zhao, X.: Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50, 1825–1834 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lin, C.-M., Hsu, C.-F., Chen, T.-Y.: Adaptive fuzzy total sliding-mode control of unknown nonlinear systems. Int. J. Fuzzy Syst. 14, 434–443 (2012)MathSciNetGoogle Scholar
  23. 23.
    Liu, J., Laghrouche, S., Harmouche, M., Wack, M.: Adaptive-gain second-order sliding mode observer design for switching power converters. Control Eng. Pract. 30, 124–131 (2014a)CrossRefGoogle Scholar
  24. 24.
    Liu, J., Laghrouche, S., Wack, M.: Observer-based higher order sliding mode control of power factor in three-phase ac/dc converter for hybrid electric vehicle applications. Int. J. Control 87, 1117–1130 (2014b)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the Institution of Electrical Engineers, IET volume 121, pp. 1585–1588 (1974)Google Scholar
  26. 26.
    Merlet, J.: Parallel Robots, vol. 128, 2nd edn. Springer, Paris (2006)zbMATHGoogle Scholar
  27. 27.
    Nazir, M.B., Wang, S.: Optimized fuzzy sliding mode control to enhance chattering reduction for nonlinear electro-hydraulic servo system. Int. J. Fuzzy Syst. 12, 291–299 (2010)Google Scholar
  28. 28.
    Noroozi, N., Roopaei, M., Jahromi, M.Z.: Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14, 3978–3992 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rubio, E., Hernández, L., Aracil, R., Saltaren, R., & Guerra, J.: Implementation of Decoupled Model- Based Controller in a 2-DOF Pneumatic Platform used in Low- Cost Driving Simulators. In Proceedings of the IEEE Electronics, Robotics and Automotive Mechanics, pp. 338–343 (2009)Google Scholar
  30. 30.
    Shi, G., Shen, W.: Hybrid control of a parallel platform based on pneumatic artificial muscles combining sliding mode controller and adaptive fuzzy cmac. Control Eng. Pract. 21, 76–86 (2013)CrossRefGoogle Scholar
  31. 31.
    Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice Hall, Upper Saddle River (1991)zbMATHGoogle Scholar
  32. 32.
    Utkin, V., Guldner, J., Shijun, M.: Sliding Mode Control in Electro-mechanical Systems, vol. 34. CRC Press, Boca Raton (1999)Google Scholar
  33. 33.
    Utkin, V.I.: Sliding Modes in Control and Optimization: communications and Control Engineering Series. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  34. 34.
    Wu, L., Su, X., Shi, P.: Sliding mode control with bounded L 2 gain performance of Markovian jump singular time-delay systems. Automatica 48, 1929–1933 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pablo J. Prieto
    • 1
  • Nohe R. Cazarez-Castro
    • 1
  • Luis T. Aguilar
    • 2
  • Dianelis Garcia
    • 3
  1. 1.Tecnologico Nacional de Mexico-Instituto Tecnologico de TijuanaTijuanaMexico
  2. 2.Instituto Politécnico Nacional, CITEDIMesa de Otay, TijuanaMexico
  3. 3.Universidad Central “Martha Abreu” de las VillasSanta ClaraCuba

Personalised recommendations