International Journal of Fuzzy Systems

, Volume 19, Issue 1, pp 155–166 | Cite as

Robust Sensor Fault-Tolerant Control of Induction Motor Drive

  • Habib Ben ZinaEmail author
  • Moez Allouche
  • Mansour Souissi
  • Mohamed Chaabane
  • Larbi Chrifi-Alaoui


This paper presents an active fuzzy fault-tolerant control (FTC) strategy for induction motor that ensures the performances of the field-oriented control (FOC). In the proposed approach, a robust controller is synthesized in order to compensate for both the resistance variation, the load torque disturbance, and the sensor fault. The physical model of induction motor is approximated by the Takagi–Sugeno (T–S) fuzzy technique in the synchronous d-q rotating frame. Fuzzy descriptor observer is introduced to estimate simultaneously the system state and the sensor faults. A robust feedback state tracking control is proposed to guarantee the control performances by minimizing the effect of the load torque and the uncertainties. The proposed controller is based on a T–S reference model in which a desired trajectory has been specified. The performances of the trajectory tracking are analyzed using the Lyapunov theory and the \(L_2\) optimization. Observer and controller gains are obtained by solving a set of LMIs constraint. To highlight the effectiveness of the proposed control simulation, results are introduced for a 1.5 KW induction motor.


Fault-tolerant control Takagi–Sugeno model Induction motor Sensor fault Descriptor observer LMIs 


  1. 1.
    Blaschke, F.: The principle of field orientation applied to the transvector closed-loop control system for rotating fied machines. Seimens Rev. 34(5), 217–220 (1972)Google Scholar
  2. 2.
    Gouichiche, A., Boucherit, M.S., Safa, A., Messelem, Y.: Sensorless sliding mode vector control of induction motor drives. Int. J. Power Electron. Drive Syst. 2(3), 277–284 (2012)Google Scholar
  3. 3.
    Ichalal, D., Marx, B., Maquin, D., Ragot, J.: New fault tolerant control strategy for nonlinear systems with multiple model approach. In: Conference on Control and Fault-Tolerant Systems, pp. 606–611, France (2010)Google Scholar
  4. 4.
    Noura, H., Sauter, D., Hamelin, F., Theilliol, D.: Fault-tolerant control in dynamics systems: application to a winding machine. IEEE Control Syst. Mag. 20(1), 33–49 (2000)CrossRefGoogle Scholar
  5. 5.
    Gertler, J.J.: Analytical Redundancy Methods in Fault Detection and Isolation— A Survey and Synthesis. In: Proceedings of IFAC Safeprocess Conference, 1, pp. 9–22, Baden-Baden (1991)Google Scholar
  6. 6.
    Chen, J., Patton, R.J., Zhang, H.: Design of unknown input observers and robust fault detection fillters. Int. J. Control 63(1), 85–105 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sun, S., Wang, S., Wu, B.: Design of Luenberger robust fault detection observer. J. Zhejiang Univ. (Eng. Sci.) 38(6), 708–711 (2004)Google Scholar
  8. 8.
    Bouarrar, T., Marx, B., Maquin, D., Ragot, J.: Fault tolerant tracking control for continuous Takagi-Sugeno systems with time varying faults. In: 19th Mediterranean Conference on Control and Automation, pp. 1106–1111, Greece (2011)Google Scholar
  9. 9.
    Jiang, J.: Design of reconfigurable control systems using eigenstructure assignments. Int. J. Control 59(2), 1763–1781 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gao, Z., Antasklis, P.J.: Stability of the pseudo-inverse method for reconfigurable control systems. Int. J. Control 53, 717–729 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yue, G.H., Xiao-Ni, Z.: Realable \(H_\infty\) dynamic output feedback synthesis for linear systems. American Control Conference, 9, pp. 5546–5551 (2009)Google Scholar
  12. 12.
    Zhou, K., Khargonekar, P.P.: Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Syst. Control Lett. 10(1), 17–20 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tanaka, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cyber. 155(1), 116–132 (1985)zbMATHGoogle Scholar
  14. 14.
    Xie, X., Yue, D., Zhang, H., Xue, Y.: Control synthesis of discrete-time T-S fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Trans. Cyber (2015). doi: 10.1109/TCYB.2015.2411336
  15. 15.
    Xie, X.-P., Liu, Z.-W., Zhu, X.-L.: An efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time T-S fuzzy systems. Fuzzy Sets Syst. 263(1), 71–81 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kairui, C., Gao, X.Z., Lam, H.K.: A new relaxed stability condition for Takagi-Sugeno fuzzy control systems using quadratic fuzzy Lyapunov functions and staircase membership functions. Int. J. Fuzzy Syst. 16(3), 327–337 (2014)MathSciNetGoogle Scholar
  17. 17.
    Micheal, K., Eugenio, B.C., Volter, J.S.L., Louis, F.P.S.: Fuzzy dynamic output feedback control throught nonlinear Takagi-Sugeno models. Fuzzy sets Syst. 263, 92–111 (2015)CrossRefGoogle Scholar
  18. 18.
    Chang, W.-J., Tsai, Y.-S., Ku, C.-C.: Fuzzy fault tolerant control via Takagi-Sugeno fuzzy models for nonlinear systems with multiplicative noises. Int. J. Fuzzy Syst. 16(3), 338–349 (2014)MathSciNetGoogle Scholar
  19. 19.
    Hamdi, H., Rodrigues, M., Mechmeche, C., Benhadj, B.N.: Observer based fault tolerant control for Takagi-Sugeno nonlinear descriptor systems. Int. Conf. Control Eng. Inf. Technol. 1, 52–57 (2013)Google Scholar
  20. 20.
    Chamsedine, A., Theillol, D., Zhang, Y.M., Join, C., Rabbath, C.: A active fault tolerant control system design with trajectory replaning against actuator faults and saturation: application to a quadratic unmanned arial vehicle. Int. J. Adapt. Control Signal Process. 29, 1–23 (2015)CrossRefGoogle Scholar
  21. 21.
    Badihi, H., Youmin, Z., Hong, H.: Fuzzy gain—sheduled active fault tolerant control of a wind turbine. J. Frinkl. Inst. 351, 3677–3706 (2014)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shaker, M.S., Patton, R.J.: Wind tubine power maximisation based on adaptive sensor fault sliding mode control. In: Proceeding of the 20th Mediterranean Conference on Control and Automation, Barcelona, 3–6 July, pp. 1183–1188Google Scholar
  23. 23.
    Xiao, B., Qinglei, H., Youmin, Z.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1605–1612 (2012)CrossRefGoogle Scholar
  24. 24.
    Chadli, M., Aouaouda, S., Karimi, H.R., Shi, P.: Robust fault tolerant tracking controller design for a VTOL aircraft. J. Frankl. Inst. 350, 2627–2645 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bouarar, T., Marx, B., Maquin, D., Ragot, J.: Fault-tolerant control design for uncertain Takagi-Sugeno systems by trajectory tracking: a descriptor approach. Control Theory Appl. IET 7(14), 1793–1805 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Aouaouda, S., Chadli, M., Khadir, M.T., Bouarar, T.: Robust fault tolerant tracking controller design for unknown inputs T-S models with unmeasurable premise variables. J. Process Control 22(5), 861–872 (2012)CrossRefGoogle Scholar
  27. 27.
    Oudghiri, M., Chadli, M., El Hajjaji, A.: Robust observer-based fault-tolerant control for vehicle lateral dynamics. Int. J. Veh. Des. 48(3), 173–189 (2008)CrossRefGoogle Scholar
  28. 28.
    Shaker, M.S., Patton, R.J.: Active sensor fault tolernat output feedback tracking control for wind turbine systems via T-S model. Eng. Appl. Artif. Intell. 34, 1–12 (2014)CrossRefGoogle Scholar
  29. 29.
    Kamel, E., Aitouche, A.: Robust fault tolerant control of DFIG wind energy systems with unknown inputs. Renew. Energy 56, 2–15 (2013)CrossRefGoogle Scholar
  30. 30.
    Aouaouda, S., Chadli, M., Cocquempot, V., Khadir, M.T.: Multi-objective \(H_ - /H_\infty\) fault detection observer design for Takagi-Sugeno fuzzy systems with unmesurables premise variables: descriptor approach. Int. J. Adapt. Control Signal Process. 27(12), 1031–1047 (2012)CrossRefzbMATHGoogle Scholar
  31. 31.
    Bouattour, M., Chadli, M., Chaabane, M., El Hajjaji, A.: Design of robust fault detection observer for Takagi-Sugeno models using the descriptor approach. Int. J. Control Autom. Syst. 9(5), 973–979 (2011)CrossRefGoogle Scholar
  32. 32.
    Aouaouda, S., Chadli, M., Karimi, H.-R.: Robust static output-feedback controller design against sensor failure for vehicle dynamics. J. Control Theory Appl. IET 8(9), 728–737 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ghorbel, H., El Hajjaji, A., Souissi, M., Chaabane, M.: Robust static output-feedback controller design against sensor failure for vehicle dynamics. J. Circuits Syst. Signal Process. 33, 1763–1781 (2014)CrossRefGoogle Scholar
  34. 34.
    Campos-Delgado, D.U., Espinoza-Trejo, D.R., Palacios, E.: Fault tolerant control in variable speed drives: a survey. IET Electr. Power Appl. 2(2), 121–134 (2008)CrossRefGoogle Scholar
  35. 35.
    Djeghali, N., Ghanes, M., Djennoune, S., Parbot, J.P., Tajdine, M.: Fault Tolerant Control For Induction Motors Using Sliding Mode Observers. International Workshop on variable structure systems, pp. 190–196, Mexico (2010)Google Scholar
  36. 36.
    Djeghali, N., Ghanes, M., Djennoune, S., Parbot, J.P.: Sensor fault tolerant control for induction motors. Int. J. Control Autom. Syst. 11(3), 563–576 (2013)CrossRefGoogle Scholar
  37. 37.
    Tabbache, B., Rizoug, N., Benbouzid, M., Kheloui, A.: A control regonfuguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans. Veh. Technol. 62(3), 965–971 (2013)CrossRefGoogle Scholar
  38. 38.
    Mendes, A.M.S.: Fault-tolerant control operating strategies applied to three-phase induction-motors drives. IEEE Trans. Ind. Electron. 53(6), 1807–1817 (2006)CrossRefGoogle Scholar
  39. 39.
    Boniventoa, C., Isidoria, A., Marconia, L., Paolia, A.: Implicit fault-tolerant control: application to induction motors. Automatica 40(3), 355–371 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Benzoubid, M.E., Diallo, D., Zeraoulia, M.: Advenced fault tolerant control of induction motor drive for EV/HEV tracion application: from conventional to modern and intelligent control techniques. IEEE Trans. Veh. Technol. 56(2), 519–528 (2007)CrossRefGoogle Scholar
  41. 41.
    Allouche, M., Chaabane, M., Souissi, M., Mehdi, D., Tadeo, F.: State feedback tracking control for indirect fieled-oriented induction motor using Fuzzy approach. Int. J. Autom. Comput. 10, 99–110 (2013)CrossRefGoogle Scholar
  42. 42.
    Guerra, T., Kruszewski, A., Vermeiren, L., Tirmant, H.: Conditions of output stabilization for non linear models in the Takagi-Sugeno form. Fuzzy Sets Syst. 157(9), 1248–1259 (2006)CrossRefzbMATHGoogle Scholar
  43. 43.
    Li, H., Yin, S., Pan, Y., Lam, H.-K.: Model reduction for interval type-2 Takagi Sugeno fuzzy systems. Automatica 61, 308–314 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Hossein, H., Jafar, Z.: Interval Type-2 fuzzy logic controller design for the speed control of DC motors. J. Syst. Sci. Control Eng. 3(1), 266–273 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Tao, Z., Jian, X.: State feedback control of interval type-2 Takagi-Sugeno fuzzy systems via interval type-2 regional switching fuzzy controllers. Int. J. Syst. Sci. 46(15), 2756–2769 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Habib Ben Zina
    • 1
    Email author
  • Moez Allouche
    • 1
  • Mansour Souissi
    • 1
  • Mohamed Chaabane
    • 1
  • Larbi Chrifi-Alaoui
    • 2
  1. 1.Laboratory of Science and technique of Automatic Control and Computer Engineering (Lab-STA)National School of Engineering of SfaxSfaxTunisia
  2. 2.Laboratory of Innovative TechnologyUniversity of Picardie Jules VerneCuffiesFrance

Personalised recommendations