Advertisement

International Journal of Fuzzy Systems

, Volume 18, Issue 1, pp 41–51 | Cite as

Existence and Exponential Stability of Periodic Solution to Fuzzy Cellular Neural Networks with Distributed Delays

  • Changjin Xu
  • Qiming Zhang
  • Yusen Wu
Article

Abstract

In this paper, fuzzy cellular neural network with distributed delays is investigated. By using Gaines and Mawhin’s continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global exponential stability of periodic solution of such fuzzy cellular neural networks with distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Some interesting numerical simulations that complement our analytical findings.

Keywords

Fuzzy cellular neural networks Exponential stability Periodic solution Distributed delay Topological degree theory Global asymptotic stability 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (Nos. 11261010, 11201138 and 11101126), Natural Science and Technology Foundation of Guizhou Province (J[2015]2025), Scientific Research Fund of Hunan Provincial Education Department (No. 12B034) and 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011).

References

  1. 1.
    Cao, J.D.: Global exponential stability and periodic solutions of delayed cellular neural networks. J. Comput. Syst. Sci. 60(1), 38–46 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chua, L.O., Yang, L.: Celluar neural networks: theory. IEEE Trans Circ. Syst. 35(10), 1257–1272 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Chua, L.O., Yang, L.: Celluar neural networks: applications. IEEE Trans. Circ. Syst. 35(10), 1273–1290 (1988)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Yang, T., Yang, L., Wu, C., Chua, L.O.: Fuzzy cellular neural networks: theory. Proceedings of IEEE international workshop on cellular neural networks and applications, p. 181–186 (1996)Google Scholar
  5. 5.
    Yang, T., Yang, L., Wu, C., Chua, L.O.: Fuzzy cellular neural networks: applications. Proceedings of IEEE international workshop on cellular neural networks and applications, p. 225–230 (1996)Google Scholar
  6. 6.
    Wang, L., Ding, W.: Synchronization for delayed non-autonomous reaction–diffusion fuzzy cellular neural networks. Commun. Nonlinear Sci. Numer. Simul. 17(1), 170–182 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Syed Ali, M., Balasubramaniam, P.: Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple discrete and distributed time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2907–2916 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Long, S.J., Xu, D.Y.: Global exponential p-stability of stochastic non-autonomous Takagi–Sugeno fuzzy cellular neural networks with time-varying delays and impulses. Fuzzy Set. Syst. 253, 82–100 (2014)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Rakkiyappan, R., Sakthivel, N., Park, J.H., Kwon, O.M.: Sampled-data state estimation for Markovian jumping fuzzy cellular neural networks with mode-dependent probabilistic time-varying delays. Appl. Math. Comput. 221, 741–769 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Yang, G.W., Kao, Y.G., Li, W., Sun, X.Q.: Exponential stability of impulsive stochastic fuzzy cellular neural networks with mixed delays and reaction–diffusion terms. Neural Comput. Appl. 23(3–4), 1109–1121 (2013)CrossRefGoogle Scholar
  11. 11.
    Gan, Q.T.: Exponential synchronization of stochastic fuzzy cellular neural networks with reaction-diffusion terms via periodically intermittent control. Neural Process. Lett. 37(3), 393–410 (2013)CrossRefGoogle Scholar
  12. 12.
    Balasubramaniam, P., Kalpana, M., Rakkiyappan, R.: Stationary oscillation of interval fuzzy cellular neural networks with mixed delays under impulsive perturbations. Neural Comput. Appl. 22(7–8), 1645–1654 (2013)CrossRefGoogle Scholar
  13. 13.
    Gan, Q.T., Xu, R., Yang, P.H.: Exponential synchronization of stochastic fuzzy cellular neural networks with time delay in the leakage term and reaction–diffusion. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1862–1870 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Han, W., Liu, Y., Wang, L.S.: Global exponential stability of delayed fuzzy cellular neural networks with Markovian jumping parameters. Neural Comput. Appl. 21(1), 67–72 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Wang, L.H., Ding, W.: Synchronization for delayed non-autonomous reaction–diffusion fuzzy cellular neural networks. Commun. Nonlinear Sci. Numer. Simul. 17(1), 170–182 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Liu, Y.Q., Tang, W.S.: Exponential stability of fuzzy cellular neural networks with constant and time-varying delays. Phys. Lett. A 323(3–4), 224–233 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Ding, W.: Synchronization of delayed fuzzy cellular neural networks with impulsive effects. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3945–3952 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Gan, Q.T., Xu, R., Yang, P.H.: Exponential synchronization of stochastic fuzzy cellular neural networks with time delay in the leakage term and reaction–diffusion. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1862–1870 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Yuan, K., Cao, J.D., Deng, J.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing 69(13–15), 1619–1627 (2006)CrossRefGoogle Scholar
  20. 20.
    Song, Q.K., Cao, J.D.: Dynamical behaviors of a discrete-time fuzzy cellular neural networks with variable delays and impulses. J. Franklin Inst. 345(1), 39–59 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Ding, W., Han, M.: Synchronization of delayed fuzzy cellular neural networks based on adaptive control. Phys. Lett. A 372(26), 4674–4681 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, Z.W., Zhang, H.G., Wang, Z.S.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays. Neurocomputing 72(4–6), 1056–1064 (2009)CrossRefGoogle Scholar
  23. 23.
    Balasubramaniam, P., Rakkiyappan, R., Sathy, R.: Delay dependent stability results for fuzzy BAM neural networks with Markovian jumping parameters. Expert Syst. Appl. 38(1), 121–130 (2011)CrossRefGoogle Scholar
  24. 24.
    Tan, M.: Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays. Neural Process. Lett. 31(2), 147–157 (2010)CrossRefGoogle Scholar
  25. 25.
    Song, Q.K., Wang, Z.D.: Dynamical behaviors of fuzzy reaction-diffusion periodic cellular neural networks with variable coefficients and delays. Appl. Math. Model. 33(9), 3533–3545 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Li, K.: Impulsive effect on global exponential stability of BAM fuzzy cellular neural networks with time-varying delays. Int. J. Syst. Sci. 41(2), 131–142 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Yu, F., Jiang, H.J.: Global exponential synchronization of fuzzy cellular neural networks with delays and reaction–diffusion terms. Neurocomputing 74(4), 509–515 (2011)CrossRefGoogle Scholar
  28. 28.
    Balasubramaniam, P., Kalpana, M., Rakkiyappan, R.: State estimation for fuzzy cellular neural networks with time delay in the leakage term, discrete and bounded distributed delays. Comput. Math. Appl. 62(10), 3959–3972 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Balasubramaniam, P., Syed, M.: Ali, S. Arik, Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple time-varying delays. Expert Syst. Appl. 37(12), 7737–7744 (2010)CrossRefGoogle Scholar
  30. 30.
    Long, S.J., Xu, D.Y.: Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays. Neurocomputing 74(14–15), 2385–2391 (2011)CrossRefGoogle Scholar
  31. 31.
    Yu, J., Hu, C., Jiang, H.J., Teng, Z.D.: Exponential lag synchronization for delayed fuzzy cellular neural networks via periodically intermittent control. Math. Comput. Simul. 82(5), 895–908 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Zhang, Q.H., Xiang, R.G.: Global asymptotic stability of fuzzy cellular neural networks with time-varying delays. Phys. Lett. A 372(22), 3971–3977 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Gan, Q.T., Xu, R., Yang, P.H.: Synchronization of non-identical chaotic delayed fuzzy cellular neural networks based on sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 17(1), 433–443 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Chen, L.P., Wu, R., Pan, D.H.: Mean square exponential stability of impulsive stochastic fuzzy cellular neural networks with distributed delays. Expert Syst. Appl. 38(5), 6294–6299 (2011)CrossRefGoogle Scholar
  35. 35.
    Rakkiyappan, R., Balasubramaniam, P.: On exponential stability results for fuzzy impulsive neural networks. Fuzzy Set. Syst. 161(13), 1823–1835 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Balasubramaniam, P., Syed, M.: Ali, Stability analysis of Takagi–Sugeno fuzzy Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays. Math. Comput. Model. 53(1–2), 151–160 (2011)CrossRefzbMATHGoogle Scholar
  37. 37.
    Li, Y., Wang, C.: Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses. Fuzzy Set. Syst. 217, 62–79 (2013)CrossRefzbMATHGoogle Scholar
  38. 38.
    Yan, P., Lv, T.: Exponential synchronization of fuzzy cellular neural networks with mixed delay and general boundary conditions. Commun. Nonlinear Sci. Numer. Simulat. 17(2), 1003–1011 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Lv, T., Yan, P.: Dynamical behaviors of reaction–diffusion fuzzy neural networks with hybrid delays and general boundary conditions. Commun. Nonlinear Sci. Numer. Simulat. 16(2), 993–1001 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Wang, J., Lu, J.: Globally exponential stability of fuzzy cellular neural networks with delays and reaction–diffusion terms. Chaos Soliton Fractals 38(3), 878–885 (2008)CrossRefzbMATHGoogle Scholar
  41. 41.
    Huang, T.: Exponential stability of delayed fuzzy cellular neural networks with diffusion. Chaos Soliton Fractals 31(3), 658–664 (2007)CrossRefzbMATHGoogle Scholar
  42. 42.
    Huang, T.: Exponential stability of fuzzy cellular neural networks with unbounded distributed delay. Phys. Lett. A 351(1–2), 44–52 (2006)Google Scholar
  43. 43.
    Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer-verlag, Berlin (1997)Google Scholar
  44. 44.
    Cao, J.D.: New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. Lett. A 307(2–3), 136–147 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Cao, J.D., Li, Q.: On the exponential stability and periodic solutions of delayed cellular neural networks. J. Math. Anal. Appl. 252(1), 50–64 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Yang, T., Yang, L.B.: The global stability of fuzzy cellular neural networrks. IEEE Trans. Circuits Syst. 43(10), 880–883 (1996)CrossRefGoogle Scholar
  47. 47.
    Park, M.J., Kwon, O.M., Park, J.H., Lee, S.M.: Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays. Expert Syst. Appl. 39(5), 5625–5633 (2012)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Li, X., Rakkiyappan, R., Balasubramaniam, P.: Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. J. Franklin Inst. 348(2), 135–155 (2011)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Guizhou Key Laboratory of Economics System Simulation, School of Mathematics and StatisticsGuizhou University of Finance and EconomicsGuiyangPeople’s Republic of China
  2. 2.College of ScienceHunan University of TechnologyZhuzhouPeople’s Republic of China
  3. 3.School of Mathematics and StatisticsHenan University of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations