International Journal of Fuzzy Systems

, Volume 19, Issue 1, pp 238–246 | Cite as

Adaptive Fuzzy Sliding Mode Control for Nano-positioning of Piezoelectric Actuators

  • Liu Yang
  • Jin LiEmail author


In this paper, an adaptive fuzzy sliding mode control method is presented, which combines a fuzzy component added on the switching control part for use in controlling the piezoelectric actuators’ systems with uncertainties. The fuzzy logic component employed in the controller is used to compensate the effect of nonlinear terms in the system. The resulting control strategy is devised using sliding mode control schemes. Furthermore, the additional fuzzy term accelerates convergence toward the sliding surface and suppresses the chattering phenomenon. By using Lyapunov-based stability analysis, the asymptotic tracking ability of the designed controller is proved. Experimental results confirm that the designed control approach produces faster response and smaller tracking errors in comparison with the conventional sliding mode controller. The effectiveness and feasibility of the proposed control technique are verified through experimental investigations on a PEA stage.


Piezoelectric actuator (PEA) Fuzzy control Sliding mode control Hysteresis 



The authors would like to thank Dr. Jinjun Shan of York University for his equipments support used for experiments in this paper.


  1. 1.
    Moheimani, S.: Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. Rev. Sci. Instrum. 79(7), 071101 (2008)CrossRefGoogle Scholar
  2. 2.
    Putra, A.S., Huang, S., Tan, K.K., Panda, S.K., Lee, T.H.: Design, modeling, and control of piezoelectric actuators for intracytoplasmic sperm injection. Control Syst. Technol. IEEE Trans. 15(5), 879–890 (2007)CrossRefGoogle Scholar
  3. 3.
    Clayton, G.M., Tien, S., Leang, K.K., Zou, Q., Devasia, S.: A review of feedforward control approaches in nanopositioning for high-speed spm. J. Dyn. Syst. Meas. Control 131(6), 061101 (2009)CrossRefGoogle Scholar
  4. 4.
    Song, H., Vdovin, G., Fraanje, R., Schitter, G., Verhaegen, M.: Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system. Opt. Lett. 34(1), 61–63 (2009)CrossRefGoogle Scholar
  5. 5.
    Eleftheriou, E.: Nanopositioning for storage applications. Annu. Rev. Control 36(2), 244–254 (2012)CrossRefGoogle Scholar
  6. 6.
    Devasia, S., Eleftheriou, E., Moheimani, S.R.: A survey of control issues in nanopositioning. Control Syst. Technol. IEEE Trans. 15(5), 802–823 (2007)CrossRefGoogle Scholar
  7. 7.
    Clayton, G., Tien, S., Fleming, A., Moheimani, S., Devasia, S.: Inverse-feedforward of charge-controlled piezopositioners. Mechatronics 18(5), 273–281 (2008)CrossRefGoogle Scholar
  8. 8.
    Minase, J., Lu, T.-F., Cazzolato, B., Grainger, S.: A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis. Eng. 34(4), 692–700 (2010)CrossRefGoogle Scholar
  9. 9.
    Ma, Y.T., Huang, L., Liu, Y.B., Feng, Z.H.: Note: creep character of piezoelectric actuator under switched capacitor charge pump control. Rev. Sci. Instrum. 82(4), 046106 (2011)CrossRefGoogle Scholar
  10. 10.
    Juhász, L., Maas, J., Borovac, B.: Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics 21(1), 329–338 (2011)CrossRefGoogle Scholar
  11. 11.
    Liu, L., Tan, K., Chen, S., Teo, C., Lee, T.: Discrete composite control of piezoelectric actuators for high-speed and precision scanning. Ind. Inform. IEEE Trans. 9(2), 859–868 (2013)CrossRefGoogle Scholar
  12. 12.
    Mokaberi, B., Requicha, A.A.: Compensation of scanner creep and hysteresis for afm nanomanipulation. Autom. Sci. Eng. IEEE Trans. 5(2), 197–206 (2008)CrossRefGoogle Scholar
  13. 13.
    Huang, Y.-C., Lin, D.-Y.: Ultra-fine tracking control on piezoelectric actuated motion stage using piezoelectric hysteretic model. Asian J. Control 6(2), 208–216 (2004)CrossRefGoogle Scholar
  14. 14.
    Song, G., Zhao, J., Zhou, X., De Abreu-García, J.A.: Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model. Mechatron. IEEE/ASME Trans. 10(2), 198–209 (2005)CrossRefGoogle Scholar
  15. 15.
    Lin, C.-J., Yang, S.-R.: Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics 16(7), 417–426 (2006)CrossRefGoogle Scholar
  16. 16.
    Sebastian, A., Salapaka, S.M.: Design methodologies for robust nano-positioning. Control Syst. Technol. IEEE Trans. 13(6), 868–876 (2005)CrossRefGoogle Scholar
  17. 17.
    Wang, T., Gao, H., Qiu, J.: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi: 10.1109/TNNLS.2015.2411671
  18. 18.
    Dong, J., Salapaka, S.M.: Robust control of a parallel-kinematic nanopositioner. J. Dyn. Syst. Meas. Control 130(4), 041007 (2008)CrossRefGoogle Scholar
  19. 19.
    Seo, T.W., Kim, H.S., Kang, D.S., Kim, J.: Gain-scheduled robust control of a novel 3-dof micro parallel positioning platform via a dual stage servo system. Mechatronics 18(9), 495–505 (2008)CrossRefGoogle Scholar
  20. 20.
    Liaw, H.C., Shirinzadeh, B., Smith, J.: Enhanced sliding mode motion tracking control of piezoelectric actuators. Sens. Actuators A 138(1), 194–202 (2007)CrossRefGoogle Scholar
  21. 21.
    Liaw, H.C., Shirinzadeh, B., Smith, J.: Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. Control Syst. Technol. IEEE Trans. 16(4), 826–833 (2008)CrossRefGoogle Scholar
  22. 22.
    Shen, J.-C., Jywe, W.-Y., Liu, C.-H., Jian, Y.-T., Yang, J.: Sliding-mode control of a three-degrees-of-freedom nanopositioner. Asian J. Control 10(3), 267–276 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, H., Pan, Y., Zhou, Q.: Filter design for interval type-2 fuzzy systems with d stability constraints under a unified frame. IEEE Trans. Fuzzy Syst. 23(3), 719–725 (2014)CrossRefGoogle Scholar
  24. 24.
    Qiu, J., Feng, G., Gao, H.: Fuzzy-model-based piecewise \(H_\infty\) static-output-feedback controller design for networked nonlinear systems. IEEE Trans. Fuzzy Syst. 18(5), 919–934 (2010)CrossRefGoogle Scholar
  25. 25.
    Lin, C.-Y., Chen, P.-Y.: Precision tracking control of a biaxial piezo stage using repetitive control and double-feedforward compensation. Mechatronics 21(1), 239–249 (2011)CrossRefGoogle Scholar
  26. 26.
    Slotine, J.-J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199, 1st edn. Prentice Hall, New Jersey (1991)zbMATHGoogle Scholar
  27. 27.
    Duan, S., An, G., Xue, J., Wu, J., Wang, M., Lin, T.: Adaptive sliding mode control for electrohydraulic servo force control systems. Jixie Gongcheng Xuebao (Chin. J. Mech. Eng.) (China) 38(5), 109–113 (2002)CrossRefGoogle Scholar
  28. 28.
    Li, H., Sun, X., Wu, L., Lam, H.: State and output feedback control of a class of fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. (2014). doi: 10.1109/TFUZZ.2014.2387876
  29. 29.
    Lin, C.-M., Hsu, C.-F., Chen, T.-Y.: Adaptive fuzzy total sliding-mode control of unknown nonlinear systems. IEEE Trans. Fuzzy Syst. 14(3), 434–443 (2012)MathSciNetGoogle Scholar
  30. 30.
    Su, X., Wu, L., Shi, P., Chen, C.P.: Model approximation for fuzzy switched systems with stochastic perturbation. IEEE Trans. Fuzzy Syst. (2014). doi: 10.1109/TFUZZ.2014.2362153
  31. 31.
    Jhi, H.-L., Tseng, C.-S.: Robust static output feedback fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances. Int. J. Fuzzy Syst. 14(1), 131–140 (2012)MathSciNetGoogle Scholar
  32. 32.
    Qiu, J., Feng, G., Yang, J.: A new design of delay-dependent robust \(H_\infty\) filtering for discrete-time t-s fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 17(5), 1044–1058 (2009)CrossRefGoogle Scholar
  33. 33.
    Ho, H., Wong, Y.-K., Rad, A.B.: Adaptive fuzzy sliding mode control with chattering elimination for nonlinear siso systems. Simul. Model. Pract. Theory 17(7), 1199–1210 (2009)CrossRefGoogle Scholar
  34. 34.
    Li, H., Wu, C., Shi, P., Gao, Y.: Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. (2014). doi: 10.1109/TCYB.2014.2371814
  35. 35.
    Su, X., Wu, L., Shi, P., Song, Y.-D.: A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12), 3268–3275 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Cerman, O., Hušek, P.: Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism. Expert Syst. Appl. 39(11), 10269–10277 (2012)CrossRefGoogle Scholar
  37. 37.
    Xu, Q., Li, Y.: Fuzzy sliding mode control with perturbation estimation for a piezoactuated micromanipulator. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications, pp. 153–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  38. 38.
    Wang, L.-X.: A Course in Fuzzy Systems. Prentice-Hall Press, Upper Saddle River (1999)Google Scholar
  39. 39.
    Dawson, D.M., Hu, J., Burg, T.C.: Nonlinear Control of Electric Machinery. Marcel Dekker, New York (1998)Google Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Automation, Harbin Engineering UniversityHarbinChina
  2. 2.College of Automation, Harbin Engineering UniversityHarbinChina

Personalised recommendations