Advertisement

Detection of urban flood inundation using RISAT-1 SAR images: a case study of Srinagar, Jammu and Kashmir (North India) floods of September 2014

  • C. M. BhattEmail author
  • G. S. Rao
  • Sowjanya Jangam
Original Article
  • 14 Downloads

Abstract

Microwave data from SAR (synthetic aperture radar) sensors are used extensively in providing operational support for riverine floods, unlike for urban flood disaster. Current approaches for flood mapping using SAR basically aim at detecting for regions of low backscatter due to specular reflection from water surface. However, flooding in urban areas may appear bright in SAR images, because of the enhancement of the double-bounce effect. The present communication presents a case study of the use of moderate-resolution C-band SAR images from Indian Remote Sensing Satellite RISAT-1 to assess the changes in backscattering coefficient (σ0) values (flood σ0 − non-flood σ0) for catastrophic floods of September 2014. SAR images considered for evaluation are with similar acquisition parameters (orbit, look direction, incidence angle, polarization, imaging mode, resolution, and acquisition time) to have a consistency in comparison of backscatter values. From the backscattering coefficient (σ0) comparison analysis and visual inspection between pre-flood and flood duration images, it is observed that there is a significant increase in the σ0 values of about 8.0 dB and corresponding increase in the tonal brightness of flooded locations. The areas identified with high backscatter response are also validated for flooding through high-resolution Pleiades (spatial resolution 0.5 m) optical satellite data and ground information from open sources. The observations made from this study highlight the fact that moderate-resolution SAR images could be an important source in indicating urban flooded areas during rapid response.

Keywords

Backscatter coefficient Double bounce RISAT-1 SAR and urban flood 

Notes

Acknowledgements

The present work is a part of the study carried out by the authors at Disaster Management Support Division, NRSC, Hyderabad. The authors would like to gratefully acknowledge the institutional support and guidance given by Director, NRSC, for carrying out the study. RISAT-1 data provided by National Data Centre (NDC), NRSC is thankfully acknowledged. High-resolution Pleaides data used for validation and provided under International Charter for J&K floods,India under Call Id 500 is also gratefully acknowledged.

References

  1. Bhatt CM, Rao GS, Begum A, Manjusree P, Sharma SVSP, Prasanna L, Bhanumurthy V (2013) Satellite images for extraction of flood disaster footprints and assessing the disaster impact: Brahmaputra floods of June–July 2012, Assam, India. Curr Sci 104(12):1693-1700. http://www.current.science.ac.in/Volumes/104/12/1692.pdf. Accessed 5 Sept 2019
  2. Bhatt CM, Rao GS, Farooq M, Manjusree P, Shukla A, Sharma SVSP, Kulkarni SS, Begum A, Bhanumurthy V, Diwakar PG, Dadhwal VK (2016) Satellite based assessment of the catastrophic Jhelum floods of September 2014, Jammu & Kashmir, India. Geomat Nat Hazards Risks.  https://doi.org/10.1080/19475705.2016.1218943 CrossRefGoogle Scholar
  3. Bonn F, Dixon R (2005) Monitoring flood extent and forecasting excess runoff risk with Radarsat-1data. Nat Hazards 35(3):377–393.  https://doi.org/10.1007/s11069-004-1798-1 CrossRefGoogle Scholar
  4. Chakraborty M et al. (2013) Initial results using RISAT-1 C-band SAR data. Curr Sci 490–501. https://www.currentscience.ac.in/Volumes/104/04/0490.pdf. Accessed 5 Sept 2019
  5. Chapman B, McDonald K, Shimada M, Rosenqvist A, Schroeder R, Hess L (2015) Mapping regional inundation with spaceborne L-Band SAR. Remote Sens 7(5):5440–5470.  https://doi.org/10.3390/rs70505440 CrossRefGoogle Scholar
  6. Chini M, Pulvirenti L, Pierdicca N (2012) Analysis and interpretation of the COSMO-SkyMed observations of the 2011 Japan Tsunami. IEEE Geosci Remote Sens Lett 9(3):467–471.  https://doi.org/10.1109/LGRS.2011.2182495 CrossRefGoogle Scholar
  7. Chini M, Pelich R, Pulvirenti L, Pierdicca N, Hostache R, Matgen P (2019) Remote Sens 11(2):107.  https://doi.org/10.1109/LGRS.2010.2097580 CrossRefGoogle Scholar
  8. Ferro A, Brunner D, Bruzzone L, Lemoine G (2011) On the relationship between double bounce and the orientation of buildings in VHR SAR images. IEEE Geosci Remote Sens Lett 8(4):612–616.  https://doi.org/10.1109/LGRS.2010.2097580 CrossRefGoogle Scholar
  9. Giustarini L, Hostache R, Matgen P, Schumann G, Bates PD, Mason DC (2013) A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 51(4):2417–2430.  https://doi.org/10.1109/TGRS.2012.2210901 CrossRefGoogle Scholar
  10. Hassan Z, Shah JA, Kanth TA, Pandit AK (2015) Influence of land use/land cover on the water chemistry of Wular lake in Kashmir Himalaya (India). Ecol Process 4:9.  https://doi.org/10.1186/s13717-015-0035-z CrossRefGoogle Scholar
  11. Henry JB, Chastanet P, Fellah K, Desnos YL (2006) Envisat multi-polarized ASAR data for flood mapping. Int J Remote Sens 27:1921–1929.  https://doi.org/10.1080/01431160500486724 CrossRefGoogle Scholar
  12. Hess LL, Melack JM, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic-aperture radar. IEEE Trans Geosci Remote Sens 33(4):896–904.  https://doi.org/10.1109/36.406675 CrossRefGoogle Scholar
  13. Horritt MS, Mason DC, Luckman AJ (2001) Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int J Remote Sens 22(13):2489–2507.  https://doi.org/10.1080/01431160500486724 CrossRefGoogle Scholar
  14. Kumar H, Rajawat AS (2017) Potential of RISAT-1 SAR data in detecting palaeochannels in parts of the Thar Desert, India. Curr Sci (00113891) 113.10. https://www.currentscience.ac.in/Volumes/113/10/1899.pdf
  15. Martinis S, Twele A, Voigt S (2009) Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat Hazards Earth Syst Sci 9(2):303–314.  https://doi.org/10.5194/nhess-9-303-2009 CrossRefGoogle Scholar
  16. Mason DC, Speck R, Devereux B, Schumann GJ-P, Neal JC, Bates PD (2010) Flood detection in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 48(2):882–894.  https://doi.org/10.1109/TGRS.2009.2029236 CrossRefGoogle Scholar
  17. Mason DC, Davenport IJ, Neal JC, Schumann GJ-P, Bates PD (2012) Near realtime flood detection in urban and rural areas using high resolution Synthetic Aperture Radar images. IEEE Trans Geosci Remote Sens 50(8):3041–3052.  https://doi.org/10.1109/tgrs.2011.2178030 CrossRefGoogle Scholar
  18. Mason DC, Giustarini L, Garcia-Pintado J, Cloke HL (2014) Detection of flooded urban areas in high resolution synthetic aperture radar images using double scattering. Int J Appl Earth Obs Geoinf 28:150–159.  https://doi.org/10.1016/j.jag.2013.12.002 CrossRefGoogle Scholar
  19. Matgen P, Schumann G, Henry JB, Hoffmann L, Pfister L (2007) Integration of SAR-derived inundation areas, high precision topographic data and a river flow model toward real-time flood management. Int J Appl Earth Obs Geoinf 9(3):247–263.  https://doi.org/10.1016/j.jag.2006.03.003 CrossRefGoogle Scholar
  20. Matgen P, Hostache R, Schumann G, Pfister L, Hoffmann L, Savenije H (2011) Towards an automated SAR-based flood monitoring system: lessons learned from two case studies. Phys Chem Earth 36:241–252.  https://doi.org/10.1016/j.pce.2010.12.009 CrossRefGoogle Scholar
  21. Misra T, Rana SS, Desai NM, Dave DB, Arora RKR, Rao CVN, Bakori BV, Neelakantan R, Vachchani JG (2013) synthetic aperture radar payload on-board RISAT-1: configuration, technology and performance. Curr Sci 104 (4):.446-461. https://www.currentscience.ac.in/Volumes/104/04/0446.pdf. Accessed 5 Sept 2019
  22. Pierdicca N, Pulvirenti L, Chini M, Boni G, Squicciarino G, Candela L (2014) Flood mapping by SAR: Possible approaches to mitigate errors due to ambiguous radar signatures. In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. pp 3850–3853.  https://doi.org/10.1109/igarss.2014.6947324
  23. Pulvirenti L, Chini M, Pierdicca N, Guerriero L, Ferrazzoli P (2011) Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens Environ 115(4):990–1002.  https://doi.org/10.1016/j.rse.2010.12.002 CrossRefGoogle Scholar
  24. Pulvirenti L, Chini M, Pierdicca N, Boni G (2016) Use of SAR data for detecting floodwater in urban and agricultural areas: the role of the interferometric coherence. IEEE Trans Geosci Remote Sens 54(3):1532–1544CrossRefGoogle Scholar
  25. Rajesh K, Acharya P (2016) Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multi-sensor approach. Nat Hazards 84(1):437–464.  https://doi.org/10.1007/s11069-016-2428-4 CrossRefGoogle Scholar
  26. Ray K, Bhan SC, Bandopadhyay BK (2015) The catastrophe over Jammu and Kashmir in September 2014: a meteorological observational analysis. Curr Sci 109(3):580-591. http://www.currentscience.ac.in/Volumes/109/03/0580.pdf
  27. Romshoo SA, Altaf S, Rashid I, Dar RA (2017) Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India. Geomatics Nat Hazards Risk 9:224–228.  https://doi.org/10.1080/19475705.2017.1417332 CrossRefGoogle Scholar
  28. Rykhus R, Lu Z (2007) Hurricane Katrina flooding and oil slicks mapped with satellite imagery. In: Farris GS, Smith GJ, Crane MP, Demas CR, Robbins LL, Lavoie DL (eds) Science and the storms: the USGS response to the hurricanes of 2005, US Geological Survey Circular 1306, pp 49–52. https://pubs.usgs.gov/circ/1306/pdf/c1306_ch3_f.pdf. Accessed 3 Mar 2018
  29. Schumann GJ-P, Moller DK (2015) Microwave remote sensing of flood inundation. Phys Chem Earth 83–84:84–95.  https://doi.org/10.1016/j.pce.2015.05.002 CrossRefGoogle Scholar
  30. Schumann GJ-P, Neal JC, Mason DC, Bates PD (2011) The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sens Environ 115(10):2536–2546.  https://doi.org/10.1016/j.rse.2011.04.039 CrossRefGoogle Scholar
  31. Schumann GJP, Bates PD, Baldassarre GD, Mason DC (2012) The use of radar imagery in riverine flood inundation studies. In: Carbonneau PE, Piégay H (eds) Fluvial remote sensing for science and management. Wiley, Chichester, pp 115–140.  https://doi.org/10.1002/9781119940791.ch6 CrossRefGoogle Scholar
  32. Watanabe M, Matsumoto M, Shimada M, Asaka T, Nishikawa H, Sato M (2009) Simultaneous observation data of GB-SAR/PiSAR to detect flooding in an urban area. EURASIP J Adv Signal Process 2010(1):560512.  https://doi.org/10.1155/2010/560512 CrossRefGoogle Scholar
  33. Wheater HS (2006) Flood hazard and management: a UK perspective. Philos Trans R Soc A 364:2135–2145.  https://doi.org/10.1098/rsta.2006.1817 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IIRSDehradunIndia
  2. 2.ISROBangaloreIndia
  3. 3.NRSCHyderabadIndia

Personalised recommendations