Advertisement

Collapse dolines susceptibility mapping using frequency ratio method and GIS in Sahel-Doukkala, Morocco

  • Mohammed BouzerdaEmail author
  • Khalid Mehdi
  • Ahmed Fadili
  • Othmane Boualla
Original Article

Abstract

This study aims firstly, to build the collapse dolines susceptibility maps in the Sahel-Doukkala area of central Morocco, using the modified frequency ratio (FR) method. Secondly, to determine the relationships between factors responsible for collapse doline occurrence and their spatial distribution. To accomplish these objectives, a total of 58 collapses were identified in the field and integrated into the Geographic Information System (GIS) database. A collapse inventory map was prepared from the locations of the identified collapses. This inventory was subdivided randomly in two equal groups, one for FR model development and one for model validation. In this study, six parameters that control the development of karstic collapse dolines were selected. These factors are slope, appearance, elevation, geological nature of the terrain, distance from the underground drainage axis and, distance from faults. The combination of the chosen factors allowed the creation of Collapse Dolines susceptibility map of the study area. The validity of the obtained model was verified using the Area Under the Curve (AUC) highlighting a high prediction degree. The FR value obtained for Collapse dolines susceptibility were comprised between 2.5 and 25.8, these levels have been divided into five susceptibility classes: very low, low, moderate, high and very high. Overall, the obtained results show that the study area was dominated by very low and low or moderate susceptibility classes. However, the Sahel and the NW part of the study area was characterised by a concentration of high and very high classes. Moreover, the AUC value of 90% was obtained, which indicates the reliability of the susceptibility map for the karst collapse. This study’s findings can help decision-makers in land use planning and preventing areas of potential collapse.

Keywords

Collapse dolines susceptibility Frequency ratio (FR) GIS Sahel-Doukkala Western Morocco 

Notes

References

  1. Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329CrossRefGoogle Scholar
  2. Boualla O, Mehdi K, Bendahhou Z (2016) Collapse dolines susceptibility mapping in Doukkala-Abda (Western Morocco) by using GIS matrix method (GMM). Model. Earth Syst Environ.  https://doi.org/10.1007/s40808-015-0064-8 CrossRefGoogle Scholar
  3. Brach DJ (1953) Notes sur les climats du Maroc occidental. Maroc Méd 342:1122Google Scholar
  4. Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA 96:28–40CrossRefGoogle Scholar
  5. Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7(4):411–423CrossRefGoogle Scholar
  6. Chung CJ, Fabbri AG (1993) The representation of geosciences information for data integration. Non-Renew Resour 2(2):122–139CrossRefGoogle Scholar
  7. Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102(3–4):496–510CrossRefGoogle Scholar
  8. Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165CrossRefGoogle Scholar
  9. DRHT (1994), Elaboration d’un schéma d’exploitation des eaux souterraines du Sahel (Maroc). Rapp. Projet: DRPE-FAO. TCP/MOR/2251Google Scholar
  10. El Achheb A (1993) Etude hydrogéologique et hydrochimique de la plaine des Doukkala. Thèse de 3ème cycle, Fac. Sc. Semlalia-MarrakechGoogle Scholar
  11. Erener A, Mutlu A, Sebnem Düzgün H (2016) A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng Geol 203:45–55CrossRefGoogle Scholar
  12. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidlines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:90–111Google Scholar
  13. Ferré M, et Ruhard JP (1975) Ressources en eau t2 (plaines et bassins du Maroc Atlantique); les bassins des Abda-Doukkala et du Sahel d’Azemmour à Safi. Notes mém. Serv. géol. Maroc, n°231Google Scholar
  14. U.S. Geological Survey (2017) earth explorer, https://earthexplorer.usgs.gov/earthexplorer/browse/stats.phpAccessed 22 March 2018.
  15. Gigout M (1951) Etudes geologiques sur la Méseéta marocaine occidentale (Arriére-pays de Casablanca, Mazagan et Safi). Imprimerie Maroc-Matin, p 507Google Scholar
  16. GUESSIR H. (1995) Etude de l’Impact de l’Irrigation par les Eaux Usses Brutes sur la Qualite Physico-chimiquee du Sol et de la Nappe Phréatique dans la Region de Sidi Bennour (MAROC),Thèse de 3ème cycle, Fac. Sc EL JADIDAGoogle Scholar
  17. Guzzetti F, Carrara A, Cardinali Z, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  18. Hazan R, Monition L (1963) Etat des connaissances sur l’hydroge´ologie karstique au Maroc. Congr. Berkeley (Calif.), 1963. Eaux souterr., Ass int Hydrol Science, StockholmGoogle Scholar
  19. Hung LQ, Van NTH, Duc DM, Ha LTC, Van Son P, Khanh NH, Binh LT (2015) Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: a case study in the upper Lo River catchment (Vietnam). Landslides 13:1285–1301CrossRefGoogle Scholar
  20. Ilia I, Tsangaratos P (2016) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13(2):379–397CrossRefGoogle Scholar
  21. Kannan M, Saranathan E, Anabalagan R (2013) Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arab J Geosci 6(8):2901–2913CrossRefGoogle Scholar
  22. Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–672CrossRefGoogle Scholar
  23. Lee S, Thalib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990CrossRefGoogle Scholar
  24. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques. Troisième partie: Constitution et fonctionnement des aquifères karstiques. Thèse de Doctorat ès Sciences, Université de Dijon, France. Ann. Spéléol., 1975, 30, 21-124Google Scholar
  25. Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3–4):171–191CrossRefGoogle Scholar
  26. Ouadia M (1998) Les formations plio- quaternaire dans le domaine mesetien occidental du Maroc entre Casablanca et Safi: géomorphologie, sédimentologie, paléoenvironnement quaternaire et évolution actuelle. Thèse de Doct. D’état es Sc., Univ Mohamed V rabat.Google Scholar
  27. Rahmati O, Pourghasemi HR and Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan province, Iran. Geocarto Int 31:42–70CrossRefGoogle Scholar
  28. Reis S, Yalcin A, Atasoy M, Nisanci R, Bayrak T, Erduran M, Sancar C, Ekercin S (2012) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environ. Earth Sci. 66(7):2063–2073CrossRefGoogle Scholar
  29. Rossi G (1980)  Extrême-Nord de Madagascar : étude géomorphologique. p 439Google Scholar
  30. Rostami ZA, Al-modaresi SA, Fathizad H, Faramarzi M (2016) Landslide susceptibility mapping by using fuzzy logic: a case study of Cham-gardalan catchment, Ilam, Iran. Arab J Geosci 9(17):685CrossRefGoogle Scholar
  31. Salomon JN (1997) The climatic influences on the karst geomorphology: example of tropical and arid environments. In: Quaternaire, vol. 8, pp. 107-117.  https://doi.org/10.3406/quate.1997.1565 CrossRefGoogle Scholar
  32. Tehrany MS, Pradhan B, Jebur MN (2015) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess 29:1149–1165CrossRefGoogle Scholar
  33. Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. CATENA 118:124–135CrossRefGoogle Scholar
  34. Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation why is it still so difficult? Bull Eng Geol Env 65:167–184CrossRefGoogle Scholar
  35. Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol 55:1397–1405.  https://doi.org/10.1007/s00254-007-1090-2 CrossRefGoogle Scholar
  36. Wang Q, Li W (2017) A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping. Phys Geogr 38(4):318–337CrossRefGoogle Scholar
  37. Wang QQ, Li WP, Yan SS, Wu YL, Pei YB (2016) Gis based frequency ratio and index of entropy models to landslide susceptibility mapping (Daguan, China). Environ Earth Sci 75:780CrossRefGoogle Scholar
  38. Wu Y, Li W, Wang Q, Liu Q, Yang D, Xing M, Pei Y, Yan S (2016) Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arab J Geosci 9(2):1–16Google Scholar
  39. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72(1):1–12CrossRefGoogle Scholar
  40. Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85(3):274–287CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Marine Geosciences and Soil Sciences Laboratory (LGMSS), Research Unit Associated CNRST 45, Department of Geology, Faculty of SciencesChouïab Doukkali UniversityEl JadidaMorocco
  2. 2.Geoscience and Environment Team, Department of Geology, Faculty of ScienceIbn Zohr UniversityAgadirMorocco

Personalised recommendations