Advertisement

Estimation of the drop modulus using the brittleness index of intact rock and geological strength index of rock mass, case studies: Nosoud and Zagros tunnels in Iran

  • M. Soleiman DehkordiEmail author
  • H. A. Lazemi
  • H. R. SaeedModaghegh
Original Article
  • 3 Downloads

Abstract

The drop modulus is defined as the slope for the softening stage of the stress—strain curve of rock mass. Estimation of the mentioned parameter is very difficult because it is related to many parameters such as intact rock properties, quality of rock mass, confinement stress and etc. In this study, based on the actual collected data from Nosoud and Zagros tunnels in Iran, new empirical equations to predict the drop modulus of rock mass using the brittleness indexes is proposed. The results show that there is a direct relation between both parameters and the best correlation between them is achieved using the Altindag’s brittleness index, BI3, to estimate the drop modulus. Finally, the relation between the drop modulus with the brittleness index of intact rock and geological strength Index of rock mass is estimated and a new equation to estimate the drop modulus using both mentioned parameters is proposed.

Keywords

Drop modulus Brittleness index GSI Strain softening behavior 

Notes

References

  1. Alejano LR, Rodriguez-Dono A, Alonso E, Fdez-Manin G (2009) Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behavior. Tunn Undergr Sp tech 24(6):689–705CrossRefGoogle Scholar
  2. Alejano LR, Alonso E, Rguez-Dono A, Fdez-Manin G (2010) Application of the convergence-confinement method for tunnel excavated in rock masses exhibiting Hoek-Brown strain-softening behavior. Int J Rock Mech Min SCi 47(1):150–160CrossRefGoogle Scholar
  3. Altindag R (2002) The evaluation of rock brittleness concept on rotary blast hole drills. J S Afr Inst Min Metall 102:61–66Google Scholar
  4. Altindag R (2009) Assessment of some brittleness indexes in rockdrilling efficiency. Rock Mech Rock Eng 43:361–370.  https://doi.org/10.1007/s00603-009-0057-x CrossRefGoogle Scholar
  5. Altindag R, Guney A (2010) Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks. Sci Res Essays 5(16):2107–2118Google Scholar
  6. Barton N, Lien R, Lunde I (1974) Engineering classification of rock masses for the design of tunnel supports. Rock Mech 6(4):189–239CrossRefGoogle Scholar
  7. Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New YorkGoogle Scholar
  8. Brady BHG, Brown ET (2005) Rock mechanics: for underground mining, 3rd edn. Springer, Netherlands.  https://doi.org/10.1007/978-1-4020-2116-9 Google Scholar
  9. Broek D (1986) Elementary engineering fracture mechanics. Martinus Nijhoff Publishers, DordrechtCrossRefGoogle Scholar
  10. Cai M, Kaiser PK, Tasakab Y, Minami M (2007) Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci 44(2):247–265CrossRefGoogle Scholar
  11. Egger P (2000) Design and construction aspects of deep tunnels (with particular emphasis on strain softening rocks). Tunn Undergr Sp Tech 15(4):403–408CrossRefGoogle Scholar
  12. Fatemi Aghda SM, Ganjalipour. K, Esmaeil Zadeh M (2016) Comparison of squeezing prediction methods: a case study on Nowsoud tunnel. Geotech Geol Eng 34:1487–1512.  https://doi.org/10.1007/s10706-016-0056-0 CrossRefGoogle Scholar
  13. Gong QM, Zhao J (2007) Influence of rock brittleness on TBM penetration rate in Singapore granite. Tunn Undergr Space Technol 22(3):317–324CrossRefGoogle Scholar
  14. Heidari M, Khanlari G, Torabi-Kaveh M, Kargarian S, Saneie S (2014) Effect of porosity on rock brittleness. Rock Mech Rock Eng 47(2):785–790CrossRefGoogle Scholar
  15. Hoek E (1994) Strength of rock and rock masses. ISRM News J 2(2):4–16Google Scholar
  16. Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Sci Geom Abstr 34(8):1165–1186CrossRefGoogle Scholar
  17. Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43(2):203–215CrossRefGoogle Scholar
  18. Howarth D (1987) The effect of pre-existing microcavities on mechanical rock performance in sedimentary and crystalline rocks. Int J Rock Mech Min Sci Geomech Abstr 4:223–233CrossRefGoogle Scholar
  19. Hucka V, Das B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci Geomech Abstr 11(10):389–392CrossRefGoogle Scholar
  20. Imensazan Consulting Engineers CompaniesImensazan Consulting Engineers Company (ICE) (2008) Engineering geology maps and site reports of Zagros tunnelGoogle Scholar
  21. Kahraman S (2002) Correlation of TBM and drilling machine performances with rock brittleness. Eng Geol 65:269–283.  https://doi.org/10.1016/S0013-7952(01)00137-5 CrossRefGoogle Scholar
  22. Karimi Bavand pour AR, Haji Hoseini A (1990) Geological Map of Kermanshah, Scale 1:100000. GSIGoogle Scholar
  23. Munoz H, Taheri A, Chanda E (2016) Fracture energy-based brittleness index development and brittleness quantification by pre-peak strength parameters in rock uniaxial compression. Rock Mech Rock Eng.  https://doi.org/10.1007/s00603-016-1071-4 Google Scholar
  24. Nejati HR, Ghazvinian A (2014) Brittleness effect on rock fatigue damage evolution. Rock Mech Rock Eng 47(5):1839–1848CrossRefGoogle Scholar
  25. Nejati HR, Moosavi SA (2017) A new brittleness index for estimation of rock fracture toughness. J Min Env 8(1):83–91.  https://doi.org/10.22044/jme.2016.579 Google Scholar
  26. Nogole-Sadat MAA, Almasian M (1993) Tectonic map of Iran, Scale 1:1,000,000. Geological Survey of IranGoogle Scholar
  27. Obert L, Duvall W (1967) Rock Mechanics and the design of structures in rock. Wiley, New YorkGoogle Scholar
  28. Paone J, Madson D, Bruce WE (1969) Drillability studies: laboratory percussive drilling. Bureau of Mines. Twin Cities Mining Research Center, Twin CitiesGoogle Scholar
  29. Perez R, Marfurt K (2013) Brittleness estimation from seismic measurements in unconventional reservoirs: application to the Barnett Shale: 83rd A Ann. In: Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, pp 2258–2263Google Scholar
  30. Perez Altamar R, Marfurt K (2014) Mineralogy-based brittleness prediction from surface seismic data: application to the Barnett Shale. Interpretation 2(4):T255–T271CrossRefGoogle Scholar
  31. Protodyakonov MM (1963) Mechanical properties and drillability of rock. In: Proceedings of the 5th symposium rock mechanics. University of Minesota, Pergamon Press, New York, pp 103–118Google Scholar
  32. Ramsay JG (1967) Folding and fracturing of rocks. McGrawHill, LondonGoogle Scholar
  33. Rummel F, Fairhurst C (1970) Determination of the post-failure behavior of brittle rock using a servo-controlled testing machine. Rock Mech 2:189–204CrossRefGoogle Scholar
  34. Sahel Consulting Engineers CompaniesImensazan Consulting Engineers Company (SCE) (2008) Engineering geology maps and site reports of Zagros tunnelGoogle Scholar
  35. Sahel Consulting Engineers CompaniesImensazan Consulting Engineers Company (SCE) (2011) Engineering geology maps and site reports of Zagros TunnelGoogle Scholar
  36. Seeber G (1999) Druckstollen und Druckschächte: Bemessung—Konstruktion—Ausführung, ENKE im Georg Thieme Verlag. Stuttgart, New York 1999Google Scholar
  37. Singh SP (1986) Brittleness and the mechanical winning of coal. Min Sci Technol 3:173–180CrossRefGoogle Scholar
  38. Soleiman Dehkordi M, Shahriar K, Maarefvand P, Gharouninik M (2011) Application of the strain energy to estimate the rock load in nonsqueezing ground condition. Arch Min Sci 56(3):551–566Google Scholar
  39. Soleiman Dehkordi M, Shahriar K, Maarefvand P, Gharouninik M (2013) Application of the strain energy to estimate the rock load in squeezing ground condition of Emamzade Hashem tunnel in Iran. Arab J Geosci 6(4):1241–1248CrossRefGoogle Scholar
  40. Soleiman Dehkordi M, Lazemi HA, Shahriar K, Soleiman Dehkordi M (2015a) Estimation of the rock load in non-squeezing ground condition using the post failure properties of rock. Mass Geotech Geol Eng 33(4):1115–1128CrossRefGoogle Scholar
  41. Soleiman Dehkordi M, Lazemi HA, Shahriar K (2015b) Application of the strain energy ratio and the equivalent thrust per cutter to predict the penetration rate of TBM, case study: Karaj—Tehran water conveyance tunnel of Iran. Arab J Geosci 8(7):4833–4842CrossRefGoogle Scholar
  42. Tarasov B, Potvin Y (2013) Universal criteria for rock brittleness estimation under triaxial compression. Int J Rock Mech Min Sci 59:57–69CrossRefGoogle Scholar
  43. Tutluoğlu L, Öge İF, Karpuz C (2015) Relationship between pre-failure and post-failure mechanical properties of rock material of different origin. Rock Mech Rock Eng 48(1):121–141.  https://doi.org/10.1007/s00603-014-0549-1 CrossRefGoogle Scholar
  44. Wawersik W, Fairhurst C (1970) A study of brittle rock fracture in laboratory compression experiments. Int J Rock Mech Min Sci Geomech Abstr 7(5):561–575CrossRefGoogle Scholar
  45. Yagiz S (2009) Assessment of brittleness using rock strength and density with punch penetration test. Tunn Undergr Space Technol 24(1):66–74CrossRefGoogle Scholar
  46. Zhang D, Ranjith n PG, Perera MSA (2016) The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. J Petrol Sci Eng 143:158–170CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Soleiman Dehkordi
    • 1
    Email author
  • H. A. Lazemi
    • 1
  • H. R. SaeedModaghegh
    • 1
  1. 1.Department of Civil Engineering, Bafgh BranchIslamic Azad UniversityBafghIran

Personalised recommendations