Advertisement

Multi-level pedotransfer modification functions of the USLE-K factor for annual soil erodibility estimation of mixed landscapes

  • Pooja P. Preetha
  • Ashraf Z. Al-Hamdan
Original Article
  • 28 Downloads

Abstract

This study presents new pedotransfer functions for realistic and dynamic predictions of the USLE soil erodibility factor (K). Multiple linear regression (MLR) models capturing the factors of the USLE of Fish river watershed in Alabama are developed using a dynamic remotely sensed land cover data from MODIS integrated into ArcSWAT model. The correlation matrix results of a forward stepwise MLR analysis for the period 2001–2011 show that the K-factor is profoundly affected by five variables namely, slope length and steepness, crop management factor, soil permeability, soil moisture content, and soil bulk density. The study demonstrates that the soil moisture content and soil bulk density factors that are commonly unaccounted for in the traditional USLE have a significant impact on K-factor. The predictions of the MLR models developed in the study are verified for the years 2006 and 2011. The results show that the MLR model containing all five variables is a good fit for K-factor (R2: 0.89 for 2006; 0.94 for 2011). The study shows that the mean values of K estimated for 2001–2011 using the USLE and MLR are respectively, 1.7 and 1.2 times the mean value of the measured K. The strong correlation between the estimated K from the MLR model and the measured K indicates that the use of soil moisture content (R2 = 0.84, p < 0.05) and soil bulk density (R2 = 0.77, p < 0.05) as predictor variables gives a better all-inclusive estimation of the soil erodibility factor in regions with noticeable temporal land cover transformations.

Keywords

ArcSWAT model Multiple linear regression Remotely sensed MODIS data Crop management factor Soil moisture Soil bulk density 

Notes

References

  1. Arnold G, Kiniry R, Srinivasan R, Williams R, Haney B, Neitsch L (2012a) Soil & water assessment tool: input/output documentation. Texas Water Resources Institute (TR-439), TexasGoogle Scholar
  2. Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK (2012b) SWAT: model use, calibration, and validation. ASABE 55(4):1494–1508. https://swat.tamu.edu/media/90102/azdezasp.pdf
  3. Auerswald K, Fiener P, Martin W, Elhaus D (2014) Use and misuse of the K factor equation in soil erosion modeling: an alternative equation for determining USLE nomograph soil erodibility values. Catena 118:220–225.  https://doi.org/10.1016/j.catena.2014.01.008 CrossRefGoogle Scholar
  4. Bernatek-Jakiel A, Poesen J (2018) Subsurface erosion by soil piping: significance and research needs. Earth Sci Rev.  https://doi.org/10.1016/j.earscirev.2018.08.006 CrossRefGoogle Scholar
  5. Boix-Fayos C, Vente J, Albaladejo J, Martínez-Mena M (2009) Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agric Ecosyst Environ 133(1–2):75–85.  https://doi.org/10.1016/j.agee.2009.05.013 CrossRefGoogle Scholar
  6. Celik I (2005) Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Tillage Res 83(2):270–277.  https://doi.org/10.1016/j.still.2004.08.001 CrossRefGoogle Scholar
  7. Cheng Y, Li P, Xu G, Li Z, Wang T, Cheng S, Zhang H, Ma T (2018) The effect of soil water content and erodibility on losses of available nitrogen and phosphorus in simulated freeze-thaw conditions. Catena 166:21–33.  https://doi.org/10.1016/j.catena.2018.03.015 CrossRefGoogle Scholar
  8. Conacher AJ, Sala M (1998) Land degradation in mediterranean environments of the world. Wiley, ChichesterGoogle Scholar
  9. Dechmi F, Burguete J, Skhiri A (2012) SWAT application in intensive irrigation systems: model modification, calibration and validation. J Hydrol 470–471:227–238.  https://doi.org/10.1016/j.jhydrol.2012.08.055 CrossRefGoogle Scholar
  10. Emadi M, Emadi M, Baghernejad M, Fathi H, Saffari M (2008) Effect of land use change on selected soil physical and chemical properties in North Highlands of Iran. J Appl Sci 8(3):496–502. http://www.docsdrive.com/pdfs/ansinet/jas/2008/496-502.pdf CrossRefGoogle Scholar
  11. Engel B, Storm D, White M, Arnold J, Arabi M (2007) A hydrologic/water quality model application protocol. J Am Water Resour Assoc 43(5):1223–1236.  https://doi.org/10.1111/j.1752-1688.2007.00105.x CrossRefGoogle Scholar
  12. Flacke W, Auerswald K, Neufang L (1990) Combining a modified Universal Soil Loss Equation with a digital terrain model for computing high resolution maps of soil loss resulting from rain wash. Catena 17:383–397.  https://doi.org/10.1016/0341-8162(90)90040-K CrossRefGoogle Scholar
  13. Foster GR (2005) Draft: science documentation, revised universal soil loss equation version 2 (RUSLE2). USDA-Agricultural Research Service, Washington, D.CGoogle Scholar
  14. Foster GR, McCool DK, Renard KG, Moldenhauer WC (1981) Conversion of the universal soil loss equation to SI metric units. J Soil Water Conserv 36(6):355–359. http://www.jswconline.org/content/36/6/355.short
  15. Gitas IZ, Douros K, Minakou C, Silleos GN, Karydas CG (2007) Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. EARSeL eProc 8:40–52. http://www.eproceedings.org/static/vol08_1/08_1_gitas1.pdf
  16. Goodrich DC, Guertin DP, Burns IS, Nearing MA, Stone JJ, Wei H, Heilman P, Hernandez M, Spaeth K, Pierson F, Paige GB, Miller SN, Kepner WG, Ruyle G, McClaran MP, Weltz M, Jolley L (2011) AGWA: The automated geospatial watershed assessment tool to inform rangeland management. Rangelands 33:41–47.  https://doi.org/10.2111/1551-501X-33.4.41 CrossRefGoogle Scholar
  17. Google earth engine (2018) Google earth engine code editor: supervised classification. https://code.earthengine.google.com/7b6087d3933a892e33a2ed4f6e8e9860?noload=120T23%3A59%3A59.000Z&q=modis%20surface%20reflectance&ok=modis%20surface%20reflectance. Accessed 14 May 2018
  18. Gore DB, Snape I (2008) Freeze-thaw cycling, moisture and leaching from a controlled release nutrient source. Cold Reg Sci Technol 52(3):401–407.  https://doi.org/10.1016/j.coldregions.2007.07.007 CrossRefGoogle Scholar
  19. Grimm M, Jones R, Montanarella L (2002) Soil erosion risk in Europe. European Commission, Institute for Environment and Sustainability, European Soil BureauGoogle Scholar
  20. Gungor K, Karakaya N, Evrendilek F, Akgul S, Baskan O, Cebel H, Farhoud H, Turkecan O, Yasar S, Gumus O (2016) Spatiotemporal modeling of watershed nutrient transport dynamics: implications for eutrophication abatement. Ecol Inform 34:52–69.  https://doi.org/10.1016/j.ecoinf.2016.04.012 CrossRefGoogle Scholar
  21. Hoyos N (2005) Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena 63:85–108.  https://doi.org/10.1016/j.catena.2005.05.012 CrossRefGoogle Scholar
  22. Kinnell PIA (2018) Determining soil erodibilities for the USLE-MM rainfall erosion model. Catena 163:424–426.  https://doi.org/10.1016/j.catena.2018.01.008 CrossRefGoogle Scholar
  23. Kinnell PIA, Risse LM (1998) USLE-M: empirical modeling rainfall erosion through runoff and sediment concentration. Soil Sci Soc Am J 62:1667–1672. https://dl.sciencesocieties.org/publications/sssaj/abstracts/62/6/SS0620061667 CrossRefGoogle Scholar
  24. Kong AYY, Six J, Bryant DC, Denison RF, van Kessel C (2005) The relationships between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69:1078–1085. https://dl.sciencesocieties.org/publications/sssaj/abstracts/69/4/1078 CrossRefGoogle Scholar
  25. Laflen JM, Flanagan DC (2013) The development of U.S. soil erosion prediction and modeling. ISWCR 1(2):1–11.  https://doi.org/10.1016/S2095-6339(15)30034-4 CrossRefGoogle Scholar
  26. Li L, Meng QY (2013) Reviews of phosphorus transport and transformation in soil under freezing and thawing actions. Front Ecol Environ 6:1074–1078Google Scholar
  27. Lu D, Li G, Valladares GS, Batistella M (2004) Mapping soil erosion risk in Rondônia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degrad Dev 15(5):499–512.  https://doi.org/10.1002/ldr.634 CrossRefGoogle Scholar
  28. Mancino G, Nole A, Ripullone F, Ferrara A (2014) Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. iForest 7:75–84. http://www.sisef.it/iforest/contents/?id=ifor0909-007 CrossRefGoogle Scholar
  29. Mattheus C, Norton M (2013) Comparison of pond-sedimentation data with a GIS-based USLE model of sediment yield for a small forested urban watershed. Anthropocene 2:89–101.  https://doi.org/10.1016/j.ancene.2013.10.003 CrossRefGoogle Scholar
  30. Molina-Navarro E, Andersen H, Nielsen A, Thodsen H, Trolle D (2017) The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environ Model Softw 93:255–267.  https://doi.org/10.1016/j.envsoft.2017.03.018 CrossRefGoogle Scholar
  31. Montanarella L (2007) Trends in land degradation in Europe. Springer, Berlin, pp 83–104. https://link.springer.com/chapter/10.1007/978-3-540-72438-4_5
  32. Moriasi DN, Arnold JG, Van Liew MW, Binger RL, Harmel RD, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. https://elibrary.asabe.org/abstract.asp?aid=23153
  33. Mulumba LN, Lal R (2008) Mulching effects on selected soil physical properties. Soil Tillage Res 98:106–111.  https://doi.org/10.1016/j.still.2007.10.011 CrossRefGoogle Scholar
  34. Nasta P, Palladino M, Ursino N, Saracino A, Sommella A, Romano N (2017) Assessing long-term impact of land-use change on hydrological ecosystem functions in a Mediterranean upland agro-forestry catchment. Sci Total Environ 605–606:1070–1082.  https://doi.org/10.1016/j.scitotenv.2017.06.008 CrossRefGoogle Scholar
  35. Nie XJ, Zhang JH, Cheng JX, Gao H, Guan ZM (2016) Effect of soil redistribution on various organic carbons in a water- and tillage-eroded soil. Soil Tillage Res 155:1–8.  https://doi.org/10.1016/j.still.2015.07.003 CrossRefGoogle Scholar
  36. Nunes AN, Coelho COA, Almeida AC, Figueiredo A (2010) Soil erosion and hydrological response to land abandonment in a central Inland area of Portugal. Land Degrad Dev 21(3):260–273.  https://doi.org/10.1002/ldr.973 CrossRefGoogle Scholar
  37. Nunes AN, Almeida AC, Coelho COA (2011) Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl Geogr 31(2):687–699.  https://doi.org/10.1016/j.apgeog.2010.12.006 CrossRefGoogle Scholar
  38. Nzeyimana I, Hartemink AE, Ritsema C, Stroosnijder L, Huerta Lwanga E, Geissen V (2017) Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 149:43–51.  https://doi.org/10.1016/j.catena.2016.08.034 CrossRefGoogle Scholar
  39. Ostovari Y, Ghorbani-Dashtaki S, Bahrami H, Naderi M, Dematte J, Kerry R (2016) Modification of the USLE k factor for soil erodibility assessment on calcareous soils in Iran. Geomorphology 273:385–395.  https://doi.org/10.1016/j.geomorph.2016.08.003 CrossRefGoogle Scholar
  40. Pandey A, Himanshu SK, Mishra SK, Singh VP (2016) Physically based soil erosion and sediment yield models revisited. Catena 147:595–620. https://www.sciencedirect.com/science/article/pii/S0341816216303137 CrossRefGoogle Scholar
  41. Pham TG, Degener J, Kappas M (2018) Integrated universal soil loss equation (USLE) and geographical information system (GIS) for soil erosion estimation in a sap basin; Central Vietnam. ISWCR 6(2):99–110.  https://doi.org/10.1016/j.iswcr.2018.01.001 CrossRefGoogle Scholar
  42. Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123. http://science.sciencemag.org/content/267/5201/1117 CrossRefGoogle Scholar
  43. Plant & Soil Sciences eLibrary (2018) Erosion: factors contributing to water and wind erosion of soil. http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1086025423&topicorder=4&maxto=20&minto=1. Accessed 14 May 2018
  44. Prasannakumar V, Vijith H, Abinod S, Geetha N (2012) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci Front 3(2):209–215.  https://doi.org/10.1016/j.gsf.2011.11.003 CrossRefGoogle Scholar
  45. Qian-kun G, Bao-yuan L, Yun X, Ying-na L, Shui-qing Y (2015) Estimation of USLE crop and management factor values for crop rotation systems in China. J Integr Agric 14(9):1877–1888.  https://doi.org/10.1016/S2095-3119(15)61097-8 CrossRefGoogle Scholar
  46. Renard KG, Foster GR, Weesies GA (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46:30–33. http://www.jswconline.org/content/46/1/30.short
  47. Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation:Planning with the revised universal soil loss equation (RUSLE), Agriculture Handbook, vol 703. U.S. Department of Agriculture, Washington, D.CGoogle Scholar
  48. Rodríguez RR, Arbelo CD, Guerra J, Natario MJS, Armas CM (2006) Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena 66:228–235.  https://doi.org/10.1016/j.catena.2006.02.001 CrossRefGoogle Scholar
  49. Sadeghi SHR, Singh JK, Das G (2004) Efficiency of annual soil erosion models for storm-wise sediment prediction: a case study. Agric Eng Int CIGR J 13:1–14. https://ci.nii.ac.jp/naid/10029235256/
  50. Santhi C, Arnold JG, Williams JR, Dugas WA, Hauck L (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188.  https://doi.org/10.1111/j.1752-1688.2001.tb03630.x CrossRefGoogle Scholar
  51. Shabani F, Kumar L, Esmaeili A (2014) Improvement to the prediction of the USLE K factor. Geomorphology 204:229–234.  https://doi.org/10.1016/j.geomorph.2013.08.008 CrossRefGoogle Scholar
  52. Tanner S, Katra I, Argaman E, Ben-Hur M (2018) Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces. Sci Total Environ 616–617:1524–1532.  https://doi.org/10.1016/j.scitotenv.2017.10.161 CrossRefGoogle Scholar
  53. Thomas DT, Moore AD, Bell LW, Webb NP (2018) Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program. Agric Syst 162:123–135.  https://doi.org/10.1016/j.agsy.2018.02.001 CrossRefGoogle Scholar
  54. Vaezi AR, Sadeghi SH, Bahrami HA, Mahdian M (2008) Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology 97:414–423.  https://doi.org/10.1016/j.geomorph.2007.08.017 CrossRefGoogle Scholar
  55. Vaezi AR, Sadeghi SH, Bahrami HA, Mahdian M (2010) Spatial variability of soil erodibility factor (K) of the USLE in North West of Iran. J Agric Sci Technol 12:241–252. http://journals-old.modares.ac.ir/article_4371.html
  56. Vente J, Poesen J, Verstraeten G, Govers G, Vanmaercke M, Rompaey AV, Arabkhedri M, Boix-Fayos C (2008) Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth Sci Rev 127:16–29.  https://doi.org/10.1016/j.earscirev.2013.08.014 CrossRefGoogle Scholar
  57. Vermont Department of Environmental Conservation (2017) Channel erosion. Agency of Natural Resources, VermontGoogle Scholar
  58. Waldhoff G, Lussem U, Bareth G (2017) Multi-data approach for remote sensing-based regional crop rotation mapping: a case study for the Rur catchment, Germany. Int J Appl Earth Obs 61:55–69.  https://doi.org/10.1016/j.jag.2017.04.009 CrossRefGoogle Scholar
  59. Wang B, Zheng F, Guan Y (2016) Improved USLE-k factor prediction: a case study on water erosion areas in China. ISWCR 4:168–176.  https://doi.org/10.1016/j.iswcr.2016.08.003 CrossRefGoogle Scholar
  60. Williams JR (1975) Sediment-yield prediction with universal equation using runoff energy factor. Present and prospective technology for predicting sediment yield and sources, Publication ARS-S-40. US Department of Agriculture, Washington, DC, pp. 244–252Google Scholar
  61. Wischmeier WH, Mannering JV (1969) Relation of soil properties to its erodibility. Soil Sci Soc Am J Proc 33:131–137. https://dl.sciencesocieties.org/publications/sssaj/abstracts/33/1/SS0330010131 CrossRefGoogle Scholar
  62. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. USDA, Agricultural HandbookGoogle Scholar
  63. Yao X, Yu J, Jiang H, Sun W, Li Z (2016) Roles of soil erodibility, rainfall erosivity and land use in affecting soil erosion at the basin scale. Agric Water Manag 174:82–92.  https://doi.org/10.1016/j.agwat.2016.04.001 CrossRefGoogle Scholar
  64. Yesuf H, Assen M, Alamirew T, Melesse A (2015) Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 127:191–205.  https://doi.org/10.1016/j.catena.2014.12.032 CrossRefGoogle Scholar
  65. Yusong D, Shuwen D, Dong X, Chong C (2017) Soil erodibility and physicochemical properties of alluvial fan of collapsing gullies in South China. Pedosphere.  https://doi.org/10.1016/S1002-0160(15)60105-9 CrossRefGoogle Scholar
  66. Zhang KL, Shu AP, Xu XL, Yang QK, Yu B (2008) Soil erodibility and its estimation for agricultural soils in China. J Arid Environ 72(6):1002–1011.  https://doi.org/10.1016/j.jaridenv.2007.11.018 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations