Advertisement

Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco

  • Said Eljebri
  • Mohammed Mounir
  • Amal Tsouli Faroukh
  • Abdelmajid Zouahri
  • Rachid Tellal
Original Article
  • 22 Downloads

Abstract

In this study conducted in the semi-arid region of the irrigated plain of Doukkala, Morocco, we evaluated the spatial variation in the soil of organic matter (OM), pH of soil, cation exchange capacity (CEC), potassium (K2O), soil phosphorus (P2O5), clay, sand and silt, this investigation use conventional statistics and a geographical information system (GIS) to create a map of soil redistribution, which included a newly compiled 1:10,000 digital soil map, and using 1865 soil samples (0–20 cm), the produce maps of distribution the variability of soil physico-chemical properties and to provide information which revealed the soil quality functions of the physicochemical characteristics. Coefficient of variation (CV) indicated that OM, P2O5, K2O, CEC, and Silt indicated that high variation (CV > 40%), Moreover, the Coefficient of variation the pH, the our areas value was 9, 91%, which indicated very low variation. The semivariogram model of soil physico-chemical properties [lag distance, rang, nugget (C0), partial sill (C), Sill (C0 + C) and nugget/sill ratio] indicated the diver’s spatial dependency of soil properties (strongly, moderately and weakly). According to spatial variability of parameters was mapped by ordinary kriging using spherical model based on root mean square error and the interpolated methods of inverse distance weighting deterministic. In this work, we find that the kriging ordinary and deterministic methods show almost similar results with a spatial distribution and provide the heterogeneity the distribution map of four area in different soil parameters in the study areas.

Keywords

Spatial variability Geostatistics GIS Irrigated plain of Doukkala Soil properties Soil physico-chemical 

Notes

Acknowledgements

The authors gratefully acknowledge the Database of soil were provided by Regional Office for the implementation of the agricultural value of Doukkala (ORMVAD), El Jadida, Morocco.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. Al-Kaisi MM, Yin XH, Licht MA (2005) Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric Ecosyst Environ 105:635–647CrossRefGoogle Scholar
  2. Arshad MA, Coen GM (1992) Characterization of soil quality physical and chemical criteria. Am J Altern Agric 7:25–32 (Atlas de la qualité des sols et des eaux soutarraines dans le périmètre irrigué des doukkala) CrossRefGoogle Scholar
  3. Ayoubi S, Zamani SM, Khormali F (2007) Spatial variability of some soil properties for site specific farming in northern Iran. Int J Plant Prod 1:225–236Google Scholar
  4. Badraoui M (1998) Effects of intensive cropping under irrigation on soil quality in Morocco. In: Badraoui M (ed) Proceedings of the 16th World congress of soil science, B5-post congress tour in Morocco, AMSSOL, RabatGoogle Scholar
  5. Badraoui M (2006) Connaissance et utilisation des ressources en sol au Maroc, pp 93–108Google Scholar
  6. Badraoui M, Bouaziz A, et Kabassi M (1993) Contraintes physiques et potentialité du Milieu. Cas des Doukkala, vol 1. tome 2, I.A.V. Hassan II, RabatGoogle Scholar
  7. Badraoui M, Soudi B, Farhat A (1998) Variation de la qualité des sols: une base pour évaluer la durabilité de la mise en valeur agricole sous irrigation par pivot au Maroc. Etude et gestion des sols 5:225–234Google Scholar
  8. Badraoui M, Naman F et al (2008) Impact de l’intensification agricole sur la qualité des sols et des eaux souterraines dans le périmètre irrigue des doukkalaGoogle Scholar
  9. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Elsevier, AmsterdamGoogle Scholar
  10. Cambardella CA, Karlen DL (1999) Spatial analysis of soil fertility parameters. Precis Agric 1:5–14CrossRefGoogle Scholar
  11. Cambardella C, Moorman T, Novak J, Parkin T, Karlen D, Turco R, Konopka A (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1510CrossRefGoogle Scholar
  12. Cao CY, Jiang SY, Ying Z, Zhang FX, Han XS (2011) Spatial variability of soil nutrients and microbiological properties after the establishment of leguminous shrub Caragana microphylla Lam. plantation on sand dune in the Horqin Sandy Land of North east China. Ecol Eng 37:1467–1475CrossRefGoogle Scholar
  13. Cambule AH, Rossiter DG, Stoorvogel JJ, Smaling EMA (2014a) Soil organic carbon stocks in the Limpopo National Park, Mozambique: amount, spatial distribution and uncertainty. Geoderma 213:46–56CrossRefGoogle Scholar
  14. Cambule AH, Rossiter DG, Stoorvogel JJ, Smaling EMA (2014b) Soil organic carbon stocks in the Limpopo National Park, Mozambique: amount, spatial distribution and uncertainty. Geoderma 213:46–56 (SI) CrossRefGoogle Scholar
  15. Chen H, Hou R, Gong Y, Li H, Fan M, Kuzyakov Y (2009) Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res 106:85–94CrossRefGoogle Scholar
  16. Chofqi A (2004) Mise en évidence des mécanismes de contamination des eaux souterraines par lixiviats d’une décharge incontrôlée (El Jadida, Maroc): Géologie, Hydrologie, géo électrique, géochimique et épidémiologie. Thèse de doctorat NationalGoogle Scholar
  17. Choudhury BU, Mohapatra KP, Nongkhlaw L, Ngachan SV, Hazarika S, Rajkhowa DJ, Munda GC (2013) Spatial variability in distribution of organic carbon stocks in the soils of North East India. Curr Sci 104(5):604–614Google Scholar
  18. CPCS (1967) Classification française des sols. Doc. De la Commission de Pédologie et de Cartographie des SolsGoogle Scholar
  19. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  20. Dai F, Zhou Q, Lv Z, Wang X, Liu G (2014) Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Indic 45:184–194CrossRefGoogle Scholar
  21. Di Virgilio N, Monti A, Venturi G (2007) Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Res 101:232–239CrossRefGoogle Scholar
  22. El Bouazaoui (2006) Adsorption du phosphore et paramètres physicochimiques des sols irrigués de la région des doukkala; Maroc, Mémoire de DESAGoogle Scholar
  23. Emery X, Ortiz JM (2007) Weighted sample variograms as a tool to better assess the spatial variability of soil properties. Geoderma 140:81–89CrossRefGoogle Scholar
  24. FAO (2011) Guidelines for soil profile description, 3rd edn. Food and agriculture Organisation of the United nations, International soil soil reference information Centre, Land and Water Development Division, FAO, RomeGoogle Scholar
  25. Fu W, Tunney H, Zhang C (2010) Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Res 106:185–193CrossRefGoogle Scholar
  26. Gami SK, Lauren JG, Duxbury JM (2009) Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma 153:304–311CrossRefGoogle Scholar
  27. Gana L (2002) Qualité des eaux et des sols dans les périmètres des doukkala. Revue H.T.E. N° 123Google Scholar
  28. Gao XZ, MaW Q, Du S, Zhang FS, Mao DR (2001) Current status and problems of fertilization in China. Chin J Soil Sci 6:258–261Google Scholar
  29. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, 467 ppGoogle Scholar
  30. Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez G, Nriagu J (2005) Geostatistical modelling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour Res 41:W07013CrossRefGoogle Scholar
  31. Hillel D (1980) Applications of soil physics. Academic press, New York, p 385Google Scholar
  32. Huang B, Sun WX, Zhao YC, Zhu J, Yang RQ, Zhou Z, Ding F, Su JP (2007) Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 139:336–345CrossRefGoogle Scholar
  33. Jalali M (2007) Spatial variability in potassium release among calcareous soils of western Iran. Geoderma 140:42–51CrossRefGoogle Scholar
  34. Jennings E, Allott N, Pierson DC, Schneiderman EM, Lenihan D, Samuelsson P, Taylor D (2009) Impacts of climate change on phosphorus loading from a grassland catchment: Implications for future management. Water Res 43:4316–4326CrossRefGoogle Scholar
  35. Kerry R, Oliver MA (2007) Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 140:383–396CrossRefGoogle Scholar
  36. Li Y, Shi Z, Li F (2007) Delineation of site specific management zones based on temporal and spatial variability of soil electrical conductivity. Pedosphere 17:156–164CrossRefGoogle Scholar
  37. Li Y, Shi Z, Li F (2011) Delineation of site-specific management zones based on temporal and spatial variability of soil electrical conductivity. Pedosphere 17:156–164CrossRefGoogle Scholar
  38. Li J, Carlson BE, Lacis AA (2013) Application of spectral analysis techniques in the inter-comparison of aerosol data, Part I: An EOF approach to analyze the spatial-temporal variability of aerosol optical depth using multiple remote sensing data sets. J Geophys Res Atmos 118(15):8640–8648CrossRefGoogle Scholar
  39. Liu W, Su Y, Yang R, Yang Q, Fan G (2011) Temporal and spatial variability of soil organic matter and total nitrogen in a typical oasis cropland ecosystem in arid region of Northwest China. Environ Earth Sci 64:2247–2257.  https://doi.org/10.1007/s12665-011-1053-5 CrossRefGoogle Scholar
  40. Liu ZP, Shao MA, Wang YQ (2013a) Large-scale spatial interpolation of soil pH across the Loess Plateau, China. Environ Earth Sci 69(8):2731–2741CrossRefGoogle Scholar
  41. Liu Z-P, Shao M-A, Wang Y-Q (2013b) Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 197–198:67–78CrossRefGoogle Scholar
  42. Liu Z, Zhou W, Shen J, He P, Lei Q, Liang G (2014) A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma 235–236:39–47CrossRefGoogle Scholar
  43. Liu Y, Wang H, Zhang H, Liber K (2016) A comprehensive support vector machine-based classification model for soil quality assessment. Soil Tillage Res 155:19–26CrossRefGoogle Scholar
  44. Mabit L, Bernard C, Makhlouf M, Laverdière MR (2008) Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics. Geoderma Model Pedogenes 145:245–251CrossRefGoogle Scholar
  45. Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233CrossRefGoogle Scholar
  46. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266CrossRefGoogle Scholar
  47. Mathieu C (1996) Structure et programme de la normalisation “qualité des sols”. Etude et Gestion des sols 3(2):125–133Google Scholar
  48. Naman F (2003) Statut de la matière organique des sols en zones irriguées: cas du périmètre irrigues des doukkala au Maroc, thèse de doctorat d’état. Université Chouaib Doukkali, El Jadida, p 25Google Scholar
  49. Naman F, Badraoui M (2008) Impact de l’intensification agricole sur la qualité des sols et des eaux souterraines dans le périmètre irrigue des DoukkalaGoogle Scholar
  50. Nielsen DR, Bouma J (1985) Soil spatial variability. In: Proceedings of a workshop of the ISSS and the SSSA, Las Vegas, USA, 30th of November to 1st of December 1984. Pudoc, Wageningen, p 243Google Scholar
  51. Noble AD, Gillman GP, Ruaysoongnern S (2000) A cation exchange index for assessing degradation of acid soil by further acidification under permanent agriculture in the tropics. Eur J Soil Sci 51:233–243CrossRefGoogle Scholar
  52. Oleschko K, Barra JDE, Carretera ARH (1996) Structure and pedofeatures of Guanajuato (Mexico) Vertisol under different cropping systems. Soil Tillage Res 37:15–36CrossRefGoogle Scholar
  53. Outeiro L, Aspero F, Ubeda X (2008) Geostatistical methods to study spatial variability of soil cations after a prescribed fire and rainfall. Catena 74:310–320CrossRefGoogle Scholar
  54. Pan G, Smith P, Pan W (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric Ecosyst Environ 129:344–348CrossRefGoogle Scholar
  55. Patil RH, Laegdsmand M, Olesen JE, Porter JR (2010) Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agric Ecosyst Environ 139:195–205CrossRefGoogle Scholar
  56. Peigné J, Vian JF, Canavacciuolo M, Bottollier B, Chaussod R (2009) Soils sampling based on field spatial variability of soil microbial indicators. Eur J Soil Biol 45:488–495CrossRefGoogle Scholar
  57. Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167 (Reeves, 1997) CrossRefGoogle Scholar
  58. Rodríguez A, Durán J, Fernández-Palacios JM, Gallardo A (2009) Spatial pattern and scale of soil N and P fractions under the influence of a leguminous shrub in a Pinus canariensis forest. Geoderma 151:303–310CrossRefGoogle Scholar
  59. Rosemary F, Vitharana UWA, Indraratne SP, Weerasooriya R, Mishra U (2016) Exploring the spatial variability of soil properties in an Alfisol soil catena. CATENA 150:53–61CrossRefGoogle Scholar
  60. Rosemary F, Vitharana UWA, Indraratne SP, Weerasooriya R, Mishra U (2017) Exploring the spatial variability of soil properties in an Alfisol soil catena. CATENA 150:53–61CrossRefGoogle Scholar
  61. Rullan A (2003) Evaluation du système de recherche scientifique et technique au Maroc: Sols et Environnement. MESFCRS, SERSGoogle Scholar
  62. Rüth B, Lennartz B (2008) Spatial variability of soil properties and rice yield along two catenas in Southeast China11Project supported by the German Research Foundation (DFG) (No. LE 945/10-1). Pedosphere 18:409–420CrossRefGoogle Scholar
  63. Soudi B, Rahaoui M, El Hadani D, Benzakour M (1999) Evalution de l’indice de la qualité des sols en zone irriquées: cas des Doukkala. Géoobservateur 10:213–233Google Scholar
  64. Šnajdr J, Valá šková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activies and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075CrossRefGoogle Scholar
  65. Susanne A, Michelle MW (1998) Long-term trends of corn yield and soil organic matter in different crop sequences and soil fertility treatments on the Morrow Plot. Adv Agron 62:153–197Google Scholar
  66. Tagore GS, Singh B, Kulhare PS, Jatav RD (2015) Spatial variability of available nutrients in soils of Nainpur tehsil of Mandla district of Madhya Pradesh, India using Geo-statistical approach. Afr J Agric Res 10:3358–3373CrossRefGoogle Scholar
  67. Tang L, Zeng GM, Nourbakhsh F, Shen GL (2009) Artificial neural network approach for predicting cation exchange capacity in soil based on physico-chemical properties. Environ Eng Sci 26:137–146CrossRefGoogle Scholar
  68. Umali BP, Oliver DP, Forrester S, Chittleborough DJ, Hutson JL, Kookana RS, Ostendorf B (2012) The effect of terrain and management on the spatial variability of soil properties in an apple orchard. Catena 93:38–48CrossRefGoogle Scholar
  69. Vasu D, Singh SK, Sahu N, Tiwary P, Chandran P, Duraisami VP, Ramamurthy V, Lalitha M, Kalaiselvi B (2017) Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res 169:25–34CrossRefGoogle Scholar
  70. Vrščaj B, Poggio L, Marsan FA (2008) A method for soil environmental quality evaluation for management and planning in urban areas. Landsc Urban Plan 88:81–94CrossRefGoogle Scholar
  71. Webster R, Oliver M (2001) Geostatistics for environmental scientists. Wiley, West Sussex, pp 47–131Google Scholar
  72. Weindorf DC, Zhu Y (2010) Spatial variability of soil properties at Capulin Volcano, Mew Mexico, USA: implications for sampling strategy. Pedosphere 20:185–197CrossRefGoogle Scholar
  73. Xin Z, Qin Y, Yu X (2016) Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China. CATENA 137:660–669CrossRefGoogle Scholar
  74. Xu GC, Li ZB, Li P, Lu KX, Wang Y (2013) Spatial variability of soil organic carbon in a typical watershed in the source area of the middle Dan River, China. Soil Res 51(1):41–49CrossRefGoogle Scholar
  75. Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005) Pools and distributions of soil phosphorus in China. Glob Biogeochem.  https://doi.org/10.1029/2004GB002296 CrossRefGoogle Scholar
  76. Zhang X-Y, Yue-Yu SUI, Zhang X-D, Kai M, Herbert SJ (2007) Spatial variability of nutrient properties in black soil of Northeast China11Project supported by the National Basic Research Program (973 Program) of China (No. 2005CB121108) and the Heilongjiang Provincial Natural Science Foundation of China (No. C2004-25). Pedosphere 17:19–29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Team of Ecology and Valorization of Natural Substances, Department of Biology, Faculty of SciencesChouaib Doukkali UniversityEl JadidaMorocco
  2. 2.Laboratory of Physical Chemistry, Department of ChemistryNational Institute for Agricultural ResearchRabatMorocco

Personalised recommendations