Modeling Earth Systems and Environment

, Volume 3, Issue 4, pp 1215–1228 | Cite as

An ensemble of spatially explicit land-cover model projections: prospects and challenges to retrospectively evaluate deforestation policy

  • Andrew V. Bradley
  • Isabel M. D. Rosa
  • Amintas BrandãoJr.
  • Stefano Crema
  • Carlos Dobler
  • Simon Moulds
  • Sadia E. Ahmed
  • Tiago Carneiro
  • Matthew J. Smith
  • Robert M. Ewers
Original Article


Ensemble techniques, common in many disciplines, have yet to be fully exploited with spatially explicit projections from land-change models. We trial a land-change model ensemble to assess the impact of policies designed to conserve tropical rainforest at the municipality scale in Brazil, noting the achievements made and challenges ahead. Four spatial model frameworks that were calibrated with the same predictor variables produced 21 counterfactual simulations of the actual landscape. Individual projections with a uniform calibration period gave estimates that between 29 and 68% of the simulated deforestation was saved, but lacked an uncertainty estimate, whilst batch projections from two different model frameworks provided a more dependable mean estimate that 38 and 49% deforestation was prevented with an uncertainty range of 1900 and 1000 km2. The consensus ensembles used agreement between the projections and found that the seven examples with a uniform calibration period produced an error margin of ±435.94 km2 and a prevented forest loss estimate of 50%. Using all 21 projections with diverse calibration periods improved these errors to ±179.26 km2 with a 53% estimate of prevented forest loss. Whilst we achieved a method of combining projections of different frameworks to reduce uncertainty of individual modelling frameworks, demonstrating a control model and accounting for non-linear conditions are challenges that will provide better confidence in this method as an operational tool. Such retrospective evidence could be used to make timely rewards for efforts of governments and municipalities to support tropical forest conservation and help mitigate deforestation.


Land-cover modeling Deforestation Environmental policy SimiVal Brazil Green Municipality 



Spatial data sets were supplied by Imazon, Brazil, the socioeconomic data from Instituto Nacional de Pesquisas Espaciais, Brazil, and prepared at Imperial College by Igor Lysenco. Funding for the land-cover modelling Tansley working group was from Natural Environment Research Council Biodiversity & Ecosystem Service Sustainability grant, NERC/PR100027. AVB, IMDR and RME were supported by European Research Council grant 281986. This paper represents a contribution to Imperial College’s initiative in Grand Challenges in Ecosystems and the Environment. We also thank the feedback of the anonymous referees on earlier drafts of this paper.

Supplementary material

40808_2017_376_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 32 KB)


  1. Alcamo J, Schaldach R, Kock J, Kölking C, Lapola D, Priess J (2011) Evaluation of an integrated land use change model including a scenario analysis of land use change for continental Africa. Environ Model Softw 26:1017–1027. doi: 10.1016/j.envsoft.2011.03.002 CrossRefGoogle Scholar
  2. Angelsen A, Ainembabazi JH, Bauch SC, Herold M, Verchot L, Hänsel G, Schueler V. Toop G, Gilbert A, Eisbrenner K (2013) Testing methodologies for REDD+: deforestation drivers, costs and reference levels. Technical Report, UK Department for Energy and Climate Change, DECCGoogle Scholar
  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefGoogle Scholar
  4. Bai Y, Feng M, Wang H, Zhu Y, Liu Y (2014) Assessing consistency of five global land cover data sets in China. Remote Sens 6:8739–8759. doi: 10.3390/rs6098739 CrossRefGoogle Scholar
  5. Bradley AV, Rosa IMD, Pontius RG, Ahmed SE, Araújo MB, Brown DG, Brandão A Jr, Câmara G, Carnerio TGS, Hartley AJ, Smith MJ, Ewers RM (2016) SimiVal, a multi-criteria map comparison tool for land-change model projections. Environ Modell Softw 82:229–240CrossRefGoogle Scholar
  6. Brazil (2004) Plano de Ação para a prevenção e controle do desmatamento da Amazônia Legal, Grupo Permanente de Trabalho interministerial para a redução dos índice s de desmatamento da Amazônia Legal (Decreto de 3 de Julho de 2003). Presidência da República Casa Civil, Governo Federal, Brazil. pp 156. Accessed 2 Sep 2017
  7. Brito B, Souza C Jr, Amaral P (2010) Reducing emissions from deforestation at municipal level: a case study of Paragominas, Eastern Brazilian Amazon. In: Everything is connected: climate and biodiversity in a fragile world. DEFRA, British Embassy Brasilia, Brasil, pp 29–31Google Scholar
  8. Brown DG, Verburg PH, Pontius RG Jr, Lange MD (2013) Opportunities to improve impact, integration and evaluation of land-change models. Curr Opin Environ Sustain 5:425–457CrossRefGoogle Scholar
  9. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biol 16:1145–1157. doi:  10.1111/j.1365-2486.2009.02000.x CrossRefGoogle Scholar
  10. Cisneros E, Zhou SL, Börner J (2015) Naming and shaming for conservation: evidence from the Brazilian amazon. PLoS One 10(9):e0136402. doi: 10.1371/journal.pone.0136402 CrossRefGoogle Scholar
  11. Clark Labs (2009) The land-change modeler for ecological sustainability. IDRISI Focus Paper, Worcester, M: Clark University. Accessed 2 Sep 2017
  12. Deadman P, Robinson D, Moran E, Brondizio E (2004) Colonist household decision making and land-use change in the Amazon rainforest: an agent-based simulation. Environ Plan B Plan Des 31:693–709CrossRefGoogle Scholar
  13. Diniz-Filho JA, Bini LM, Rangel TF, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties of forecast species turnover under climate change. Ecography 32:897–906CrossRefGoogle Scholar
  14. Eastman R, Solorzano LA, Fossen ME (2005) Transition potential modelling for land-cover change. In: Maguire D, Batty M, Goodchild M (eds) GIS, spatial analysis, and modeling. ESRI Press, California, pp 357–385Google Scholar
  15. Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19:680–688CrossRefGoogle Scholar
  16. Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52:143–150CrossRefGoogle Scholar
  17. Hecht S (1985) Environment, development and politics: capital accumulation in the livestock sector in eastern Amazonia. World Dev 13:663–684CrossRefGoogle Scholar
  18. Herold M, Angelsen A, Verchot LV, Wijaya A, Ainembabazi JH (2012) A stepwise framework for developing REDD + reference levels. In: Angelsen A, Brockhaus M, Sunderlin WD, Verchot LV (eds) 2012 analysing REDD+: challenges and choices, Ch 16. CIFOR, BogorGoogle Scholar
  19. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37–50CrossRefGoogle Scholar
  20. Knutti R (2010) The end of model democracy? An editorial comment. Clim Change 102:395–404CrossRefGoogle Scholar
  21. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Msangi S et al (2011) Impacts of climate change and the end of deforestation on land use in the brazilian legal Amazon. Earth Interact 15:1–29CrossRefGoogle Scholar
  22. Laprise R, Hernández-Díaz L, Tete K, Sushama L, Šeparović L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian regional climate model (CRCM5). Clim Dyn 41:3219–3246CrossRefGoogle Scholar
  23. Maeda EE, de Almeida CM, de Carvalho Ximenes A, Formaggio AR, Shimabukuro YE, Pellikka P (2011) Dynamic modelling of forest conversion: simulation of past and future scenarios of rural activities expansion in the fringes of the Xingu National Park, Brazilian Amazon. Int J Appl Earth Obs Geoinf 13:435–446. doi:  10.1016/j.jag.2010.09.008 CrossRefGoogle Scholar
  24. Mas J-F, Kolb M, Paegelow M, Olmedo MTC, Houet T (2014) Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ Modell Softw 51:94–111CrossRefGoogle Scholar
  25. Matre P, Wallach D, Asseng S, Ewart F, Jones JW et al (2014) Multimodel ensembles of wheat growth: many models are better than one. Glob Change Biol. doi: 10.1111/gcb.12768 Google Scholar
  26. Meridian Institute (2011) Guidelines for REDD + Reference Levels: Principles and Recommendations. Prepared for the Government of Norway, by Arild Angelsen, Doug Boucher, SandranBrown, Valérie Merckx, Charlotte Streck, and Daniel Zarin. Accessed 2 Sep 2017
  27. Moulds S, Buytaert W, Mijic A (2015) An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geosci Model Dev. 8:3215–3229. Accessed 2 Sep 2017
  28. Müller D, Sun Z, Vongvisouk T, Pflugmacher D, Xu J, Mertz O (2014) Regime shifts limit the predictability of land-system change. Glob Environ Change 28:75–83CrossRefGoogle Scholar
  29. Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolney S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS One. doi: 10.1371/journal.pone.0014327 Google Scholar
  30. Nepstad D, Soares-Filho BS, Merry F, Lima A, Moutinho P, Carter J, Bowman M, Cattaneo A, Rodrigues H, Schwartzman S. McGrath DG, Stickler CM, Lubowski R, Piris-Cabezas P, Rivero S, Alencar A, Almeida O, Stella O (2009) The end of deforestation in the Brazilian Amazon. Science 326:1350–1351CrossRefGoogle Scholar
  31. Nunes SS, Barlow J, Gardner TA, Siqueira JV, Sales MR, Souza Jr CM (2014) A 22 year assessment of deforestation and restoration in riparian forests in the eastern Brazilian Amazon. Environ Conserv 42:193–203. doi: 10.1017/S0376892914000356 CrossRefGoogle Scholar
  32. Olmedo MTC, Pontius Jr RG, Paegelow M, Mas J-M (2015) Comparison of simulation models in terms of quantity and allocation of land change. Environ Model Softw 69:214–221CrossRefGoogle Scholar
  33. Picketty M-G, Poccard-Chapuis R, Drigo I, Coudel E, Plassin S, Laurent F, Thȃles M (2015) Multi-level governance of land use changes in the Brazilian Amazon: lessons from Paragominas, State of Pará. Forests 6:1516–1536. doi: 10.3390/f6051516 CrossRefGoogle Scholar
  34. Pielke RA, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond A 360:1705–1719. doi: 10.1098/rsta.2002.1027 CrossRefGoogle Scholar
  35. Pielke RA, Pitman A, Niyogi D, Mahmood R, Alpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Change 2:1757–7799. doi: 10.1002/wcc.144 CrossRefGoogle Scholar
  36. Pinto A, Amaral P, Souza Jr., et al. (2009) Diagnostico Socioeconomico e Florestal do Municipio de Paragominas. Report. Imazon, Belem, Para, Brasil, p 65Google Scholar
  37. Pontius RG (2000) Quantification error versus location error in comparison to categorical maps. Photogramm Eng Remote Sens 66:1011–1016Google Scholar
  38. Pontius RG, Boersma W, Catella J-C, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstien N, Kok K, Koomen E, Lippit CD, McConnell W, Sood AM, Pijanowski B, Pithadia S, Sweeney S, Trung TN, Veldkamp AT, Verburg PH (2008) Comparing the input, output, and validation maps for several models of land-change. Ann Reg Sci 42:11–37CrossRefGoogle Scholar
  39. Prestele R, Alexander P, Rounsevell MDA, Arneth A, Calvin K, Doelman J, Eitelberg DA, Engström K, Fujimori S, Hasegawa T, Havlik P, Humpenöder F, Jain AK, Krisztin T, Kyle P, Meiyappan P, Popp A, Sands RD, Schaldach R, Schüngel J, Stehfest E, Tabeau A, Van Meijl H, Van Vliet J, Verburg PH (2016) Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob Change Biol. doi: 10.1111/gcb.13337 Google Scholar
  40. Rosa I, Purves D, Souza C Jr, Ewers RM (2013) Predictive modelling of contagious deforestation in the Brazilian Amazon. PLoS One 8:e77231. doi: 10.1371/journal.pone.0077231 CrossRefGoogle Scholar
  41. Rosa IMD, Ahmed SE, Ewers RM (2014) The transparency, reliability and utility of tropical rainforest land-use and land-cover change models. Glob Change Biol 20:1707–1722CrossRefGoogle Scholar
  42. Rosa IMD, Purves D, Carreiras JMB, Ewers RM (2015) Modelling land cover change in the Brazilian Amazon: temporal changes in drivers and calibration issues. Reg Environ Change 15:123–137CrossRefGoogle Scholar
  43. Sills EO, Herrera D, Kirkpatrick AJ, Brandão A Jr, Dickson R, Hall S, Pattanayak S, Shoch D, Vedoveto M, Young L, Pfaff A (2015) Estimating the impacts of local policy innovation: the synthetic control method applied to tropical deforestation. PLoS One 10:e0132590. doi: 10.1371/journal.pone.0132590 CrossRefGoogle Scholar
  44. Soares-Filho B, Alencar A, Nepstad D, Cerqueira G, del Carmen VDM, Rivero S, Solórzano L, Voll E (2004) Simulating the response of land-cover changes to road paving and governance along a major highway: the Santarém-Cuiabá corridor. Glob Change Biol 10:745–764CrossRefGoogle Scholar
  45. Soares-Filho BS, Nepstad D, Curran LM, Cerquieira G, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon Basin. Nature 440:540–523CrossRefGoogle Scholar
  46. Soares-Filho B, Rodrigues H, Follador M (2013) A hybrid analytical-heuristic method for calibrating land-use change models. Environ Modell Softw 43:80–87CrossRefGoogle Scholar
  47. Strassburg BBN, Rodrigues ASL, Gusti M, Balmford A, Fritz S, Obersteiner M, Turner RK, Brooks TM (2012) Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nat Clim Change. doi: 10.1038/NCLIMATE1375 Google Scholar
  48. Sylla MB, Giorgi F, Pal JS, Gibba P, Kebe I, Nikiema M (2015) Projected changes in the annual cycle of high-intensity precipitation events over west africa for the late twenty-first century. J Clim 28:6475–6488CrossRefGoogle Scholar
  49. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-11-00094.1 Google Scholar
  50. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A Math Phys Eng Sci 365:2053–2075CrossRefGoogle Scholar
  51. van Vliet J, Bregt AK, Brown DG, van Delden H, Heckbert S, Verburg PH (2016) A review of current calibration and validation practices in land-change modelling. Environ Modell Softw 82:174–182CrossRefGoogle Scholar
  52. Verissimo A, Lima F, Lentini M (2002) Polos Madeireiros do Estado de Para. Belem, Para, Brazil, Imazon, p 74Google Scholar
  53. Viana C, Coudel E, Barlow J, Ferreira J, Gardner T, Parry L (2016) How does hybrid governance emerge? Role of the elite in building a Green Municipality in the Eastern Brazilian Amazon. Environ Policy Gov 26:337–350. doi: 10.1002/eet.1720 CrossRefGoogle Scholar
  54. Whately M, Campanili M (2013) Green municipalities programme: lessons learned and challenges for 2013/14. Programa Municípios Verdes, Goveno do Pará, Belém, Brazil. p 98Google Scholar
  55. Yanai AM, Fearnside PM, Graça PMLA, Nogueira EM (2012) Avoided deforestation in Brazilian Amazonia: simulating the effect of the Juma sustainable development reserve. For Ecol Manage 282:78–91CrossRefGoogle Scholar
  56. Zhang L, Liu S, Sun P, Wang T, Wang G, Zhang X et al (2015) Consensus forecasting of species distributions: the effects of niche model performance and niche properties. PLoS One 10:e0120056. doi: 10.1371/journal.pone.0120056 CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2017

Authors and Affiliations

  • Andrew V. Bradley
    • 1
  • Isabel M. D. Rosa
    • 1
    • 2
    • 3
  • Amintas BrandãoJr.
    • 4
    • 5
  • Stefano Crema
    • 6
  • Carlos Dobler
    • 7
  • Simon Moulds
    • 8
    • 9
  • Sadia E. Ahmed
    • 10
    • 11
  • Tiago Carneiro
    • 12
    • 13
  • Matthew J. Smith
    • 14
  • Robert M. Ewers
    • 1
  1. 1.Department of Life SciencesImperial College of LondonAscotUK
  2. 2.Biodiversity ConservationGerman Centre for Integrative Biodiversity Research (iDiv)LeipzigGermany
  3. 3.Martin Luther University Halle-WittenbergHalleGermany
  4. 4.Imazon, Travessa Dom Romualdo de SeixasBelémBrazil
  5. 5.Center for Sustainability and the Global Environment (SAGE), Nelson Institute for Environmental StudiesUniversity of WisconsinMadisonUSA
  6. 6.Clark LabsClark UniversityWorcesterUSA
  7. 7.Graduate School of GeographyClark UniversityWorcesterUSA
  8. 8.Centre for Water SystemsUniversity of ExeterExeterUK
  9. 9.Department of Civil and Environmental EngineeringImperial College of LondonLondonUK
  10. 10.Computational Science LaboratoryMicrosoft ResearchCambridgeUK
  11. 11.AB Sustain, 64 Innovation WayPeterboroughUK
  12. 12.Environmental Change InstituteOxford University Centre for the EnvironmentOxfordUK
  13. 13.TerraLAB, Computer Science DepartmentFederal University of Ouro PretoOuro PretoBrazil
  14. 14.Microsoft Digital, MicrosoftLondonUK

Personalised recommendations