Modeling Earth Systems and Environment

, Volume 3, Issue 2, pp 533–538 | Cite as

Monitoring water depth, surface area and volume changes in Lake Victoria: integrating the bathymetry map and remote sensing data during 1993–2016

  • Arthur W. SichangiEmail author
  • Godfrey O. Makokha
Original Article


In this study, a framework to monitor the volumetric fluctuation of the inland water body by the combination of a bathymetry map, an optical satellite imagery & multiple satellite altimetry measurements is presented. In spite of the recent studies in monitoring water level changes in lakes using satellite altimetry & optical satellite imagery, it’s still evident that these methods are limited to the water level, surface area and volume changes. However, to effectively study the lakes, it’s important to quantify the total lake volume. This hasn’t been possible as the existing satellite methods cannot estimate the bathymetry depth. The methodology was developed over Lake Victoria during 1993–2016. The results indicate that the water level, area, and volume of Lake Victoria decreased over the past 23 years. The water level shows a slight decrease (−0.005 m/year) of a total of −0.115 m from 1993 to 2016. The changes in water level translates to a reduction in lake area (−100 km2) and volume (−5 km3). Despite the inconsistent changes in area and volume, significant reduction occurred between 1998 and 2006 where (3484 km2) and (122.87 km3) reduction in area and volumes respectively were observed.


Keyword 1 Altimetry 2 Remote Sensing 3 Volume 



All sources of funding of the study should be disclosed. Please clearly indicate grants that you have received in support of your research work. Clearly state if you received funds for covering the costs to publish in open access.

Author Contributions

A.W.S. and G.O.M. designed the study, methodology and modelling approach, and collected data; A.W.S. performed the analysis and interpretation, and wrote the initial draft of the manuscript; G.O.M. revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys. doi: 10.1029/2006RG000197 Google Scholar
  2. Avsar NB, Jin S, Kutoglu H, Gurbuz G (2016) Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations. Geod Geodyn 7:50–55. doi: 10.1016/j.geog.2016.03.005 CrossRefGoogle Scholar
  3. Awange JL, Sharifi MA, Ogonda G, Wickert J, Grafarend EW, Omulo MA (2008) The falling lake victoria water level: GRACE, TRIMM and CHAMP satellite analysis of the lake basin water resources. Management 22:775–796. doi: 10.1007/s11269-007-9191-y Google Scholar
  4. Baup F, Frappart F, Maubant J (2014) Combining high-resolution satellite images and altimetry to estimate the volume of small lakes. Hydrol Earth Syst Sci 18:2007–2020. doi: 10.5194/hess-18-2007-2014 CrossRefGoogle Scholar
  5. Birkinshaw SJ, Moore P, Kilsby CG, O’Donnell GM, Hardy AJ, Berry PAM (2014) Daily discharge estimation at ungauged river sites using remote sensing. Hydrol Processes 28:1043–1054. doi: 10.1002/hyp.9647 CrossRefGoogle Scholar
  6. Bjerklie DM, Lawrence Dingman S, Vorosmarty CJ, Bolster CH, Congalton RG (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278:17–38. doi: 10.1016/S0022-1694(03)00129-X CrossRefGoogle Scholar
  7. Bjerklie DM, Moller D, Smith LC, Dingman SL (2005) Estimating discharge in rivers using remotely sensed hydraulic information. J Hydrol 309:191–209. doi: 10.1016/j.jhydrol.2004.11.022 CrossRefGoogle Scholar
  8. Crétaux J-F, Birkett C (2006) Lake studies from satellite radar altimetry. Comptes Rend Geosci 338:1098–1112. doi: 10.1016/j.crte.2006.08.002 CrossRefGoogle Scholar
  9. Crétaux JF et al (2011) SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv Space Res 47:1497–1507. doi: 10.1016/j.asr.2011.01.004 CrossRefGoogle Scholar
  10. Crétaux J-F, Abarca-del-Río R, Bergé-Nguyen M, Arsen A, Drolon V, Clos G, Maisongrande P (2016) Lake volume monitoring from space surveys. Geophysics 37:269–305. doi: 10.1007/s10712-016-9362-6 Google Scholar
  11. de Oliveira Campos I, Mercier F, Maheu C, Cochonneau G, Kosuth P, Blitzkow D, Cazenave A (2001) Temporal variations of river basin waters from topex/poseidon satellite altimetry. application to the amazon basin comptes rendus de l’Académie des Sciences—Series IIA—earth and planetary. Science 333:633–643. doi: 10.1016/S1251-8050(01)01688-3 Google Scholar
  12. Hamilton S, Munyaho AT, Krach N, Glaser S (2016) Bathymetry TIFF, Lake Victoria Bathymetry, raster, 2016. Harvard Dataverse. doi: 10.7910/DVN/SOEKNR Google Scholar
  13. Jarihani AA, Callow JN, Johansen K, Gouweleeuw B (2013) Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. J Hydrol 505:78–90. doi: 10.1016/j.jhydrol.2013.09.010 CrossRefGoogle Scholar
  14. Jean-François C, Sylvain B, Adalbert A, Muriel B-N, Mélanie B (2015) Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ Res Lett 10:015002CrossRefGoogle Scholar
  15. Kang S, Hong SY (2016) Assessing seasonal and inter-annual variations of lake surface areas in Mongolia during 2000–2011 using minimum composite MODIS NDVI. PLoS ONE 11:e0151395. doi: 10.1371/journal.pone.0151395 CrossRefGoogle Scholar
  16. Kite GW (1982) Analysis of lake victoria levels. Hydrol Sci J 27:99–110. doi: 10.1080/02626668209491093 CrossRefGoogle Scholar
  17. Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 7:13603. doi: 10.1038/ncomms13603.
  18. Mistry VV, Conway D (2003) Remote forcing of East African rainfall and relationships with fluctuations in levels of Lake Victoria. Int J Climatol 23:67–89. doi: 10.1002/joc.861 CrossRefGoogle Scholar
  19. Santos da Silva J, Calmant S, Seyler F, Rotunno Filho OC, Cochonneau G, Mansur WJ (2010) Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens Environ 114:2160–2181. doi: 10.1016/j.rse.2010.04.020 CrossRefGoogle Scholar
  20. Schwatke C, Dettmering D, Bosch W, Seitz F (2015) DAHITI—an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol Earth Syst Sci 19:4345–4364. doi: 10.5194/hess-19-4345-2015 CrossRefGoogle Scholar
  21. Shum CK, Ries JC, Tapley BD (1995) The accuracy and applications of satellite altimetry. Geophys J Int 121:321–336. doi: 10.1111/j.1365-246X.1995.tb05714.x CrossRefGoogle Scholar
  22. Sichangi AW et al (2016) Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sens Environ 179:36–53. doi: 10.1016/j.rse.2016.03.019 CrossRefGoogle Scholar
  23. Song C, Huang B, Ke L (2015) Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi-mission satellite altimetry. Hydrol Processes 29:2769–2781. doi: 10.1002/hyp.10399 CrossRefGoogle Scholar
  24. Stager JC, Ruzmaikin A, Conway D, Verburg P, Mason PJ (2007) Sunspots, El Niño, and the levels of Lake Victoria, East Africa. J Geophys Res. doi: 10.1029/2006JD008362 Google Scholar
  25. Standley CJ, Goodacre SL, Wade CM, Stothard JR (2014) The population genetic structure of Biomphalaria choanomphala in Lake Victoria, East Africa: implications for schistosomiasis transmission. Parasites Vectors 7:524. doi: 10.1186/s13071-014-0524-4 CrossRefGoogle Scholar
  26. Vörösmarty C et al. (2001) Global water data: a newly endangered species. Eos Trans Am Geophys Union 82:54–58. doi: 10.1029/01EO00031 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Geomatics, GIS and Remote SensingDedan Kimathi University of TechnologyNyeriKenya

Personalised recommendations