Radiative effects of dust aerosol on West African climate using simulations from RegCM4

Original Article

Abstract

A regional climate model (RegCM4.4) has been used to investigate the dynamical effect of dust aerosol radiative forcing and its impact on West African climate. The simulations was performed with the non-dust aerosol version of the model (control) and a dust aerosol module for the year 2010. The spatial and temporal distribution of the aerosol optical depth (AOD) derived from the dust run was compared with observed aerosol data from Aerosol Robotic Network (AERONET) and other satellite products. The results from the simulations show that dust aerosol has a significant impact on West Africa Monsoon (WAM) system. The dust particles induced shortwave (SW) radiative forcing exerted a heating effect at the top of the atmosphere (TOA) over the study area during the DJF season and cooling in MAM. In contrast, the dust induced longwave (LW) radiative forcing exerted an atmospheric cooling during dry season of DJF. The LW radiative forcing at the TOA is maximum during JJA season with the core of 4.3 Wm− 2 over the source region (Bodele). The highest degrees of correlation (r > 0.7) between modeled AOD and (AERONET, MODIS, OMI, and MISR) were observed over Cape Verde. Moderate (0.5 < r < 0.7) to poor correlations (r < 0.5) were also observed over Ilorin, Zinder, Dakar, Ouagadougou, Agoufou, and Banizoumbou. Further results over all the stations revealed that, RegCM4.4 underestimates AOD over Ilorin, Zinder, Cape Verde, Ouagadugou, Agoufou, and Banizoumbou when compared with AERONET and satellite observations except in Dakar where it overestimated AOD from MODIS. All the experiments exhibited a remarkable performance over Guinea and whole West Africa with low RMSE and high postive correlation.

Keywords

Aerosol Optical Depth West African Monsoon Regional Climate Model AERONET 

References

  1. Abiodun BJ, Adeyewa ZD, Oguntunde PG, Salami A, Ajayi VO (2012) Modeling the impacts of reforestation on future climate in West Africa. Theor Appl Climatol 110(1–2):77–96CrossRefGoogle Scholar
  2. Adeyewa ZD, Nakamura K (2003) Validation of TRMM radar rainfall data over major climatic regions in Africa. J Appl Meteor 42:331–347CrossRefGoogle Scholar
  3. Akinsanola AA, Ogunjobi KO, Gbode IE, Ajayi VO (2015) Assessing the capabilities of three regional climate models over CORDEX Africa in simulating West African summer monsoon precipitation. Adv Meteorol 2015: 935431. doi:10.1155/2015/935431 CrossRefGoogle Scholar
  4. Chiapello I, Bergametti G, Gomes L, Chatenet B, Dulac F, Pimenta J, Suares ES (1995) An additional low layer transport of Sahelian and Saharan dust over the north-eastern Tropical Atlantic. Geophys Res Lett. doi:10.1029/95GL03313.Google Scholar
  5. Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Climate 12:1165–1184, doi:10.1175/15200442 CrossRefGoogle Scholar
  6. Croft B, Pierce JR, Martin RV, Hoose C, Lohmann U (2012) Uncertainty Associated with convective wet removal of entrained aerosols in a global climate Model. Atmos Chem Phys 12:10725–10748CrossRefGoogle Scholar
  7. Darmenova K, Sokolik IN (2007) Assessing uncertainties in dust emission in the Aral Sea region caused by meteorological fields predicted with a mesoscale model. Glob Planet Change 56:297–310. doi:10.1016/j.gloplacha.2006.07.024 CrossRefGoogle Scholar
  8. Darmenova K, Sokolik IN, Shao Y, Marticorena B, Bergametti G (2009) Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia. J Geophys Res 114:D14201. doi:10.1029/2008JD011236 CrossRefGoogle Scholar
  9. Diallo I, Sylla MB, Giorgi F, Gaye, AT, Camara M (2012) Multimodel GCM-RCM ensemble based projections of temperature and precipitation over West Africa for the early 21st century. Int J Geophys. doi:10.1155/2012/972896
  10. Ginoux P, Garbuzov D, Hsu NC (2010) Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. J Geophys Res 115:D05204. doi:10.1029/2009JD012398 CrossRefGoogle Scholar
  11. Ginoux P, Prospero J, Gill TE, Hsu NC, Zhao M (2012) Global scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev Geophys. doi:10.1029/2012RG000388 Google Scholar
  12. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Cozzini S, Guettler I, O’Brien T, Tawfik A, Shalaby A, Zakey AS, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res. doi:10.3354/cr01018 Google Scholar
  13. Gong SL, Zhang XY, Zhao TL, McKendry IG, Jaffe DA, Lu NM (2003) Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: model simulation and validation. J Geophys Res 108(D9):4262. doi:10.1029/2002JD002633 CrossRefGoogle Scholar
  14. Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56(1–4):179–204CrossRefGoogle Scholar
  15. Grist JP, Nicholson SE (2001) A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J Clim 14(7):1337–1359CrossRefGoogle Scholar
  16. Gu Y et al. (2012) Dust aerosol impact on North Africa climate: a GCM Investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos Chem Phys 12:1667–1679. doi:10.5194/acp-12-1667-2012 CrossRefGoogle Scholar
  17. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote EF, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET – A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  18. Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer J, Chatenet B, Lavenue F, Kaufman YJ, Vande Castle J, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karnieli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J Geophys Res 106: 12067–12097CrossRefGoogle Scholar
  19. Huang JP, Fu Q, Su J, Tang Q, Minnis P, Hu Y, Yi Y, Zhao Q (2009) Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmos. Chem Phys 9:4011–4021 doi:10.5194/acp-9-4011-2009 Google Scholar
  20. Huang JP, Minnis P, Yan H, Yi Y, Chen B, Zhang L, Ayers JK (2010) Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos Chem Phys 10:6863–6872. doi:10.5194/acp-10-6863-2010 CrossRefGoogle Scholar
  21. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1 CrossRefGoogle Scholar
  22. Huffman GJ, Adler RF, Morrissey M, Bolvin D, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50CrossRefGoogle Scholar
  23. Huneeus N, Dentener F, Diehl T, Easter R, Fillmore D (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11(15):7781–7816. doi:10.5194/acp-11-7781-2011 CrossRefGoogle Scholar
  24. Kaufman YJ, Tanre D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of troposphericaerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067CrossRefGoogle Scholar
  25. Kim D, Chin M, Yu H, Diehl T, Tan Q, Kahn RA, Koffi B (2014) Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data. J Geophys Res 119(10):6259–6277Google Scholar
  26. Klüser L, Holzer-Popp T (2010) Relationships between mineral dust and cloud properties in the West African Sahel. Atmos Chem Phys 10:6901–6915CrossRefGoogle Scholar
  27. Konare A, Zakey AS, Solmon F, Giorgi F, Rauscher S, Ibrah S, Bi X (2008) A Regional Climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113:D12206. doi:10.1029/2007JD009322 CrossRefGoogle Scholar
  28. Mahowald N, Albani S, Engelstaedter S, Winckler G, Goman M (2011) Model insight into glacial-interglacial paleodust records. Quat Sci Rev 30(7–8):832–854CrossRefGoogle Scholar
  29. Malavelle F, Pont V, Mallet V (2011) Simulation of aerosol radiative effects over West Africa during DABEX and AMMA SOP-0. J Geophys Res D 116(8):D08205Google Scholar
  30. McTainsh GH, Leys JF, Nickling WG, (1999) Wind erodibility of arid lands in the Channel Country of western Queensland, Australia. Zeitschrift für Geomorphologie N.F. 116, 113–130Google Scholar
  31. Miller RL, Perlwitz J, Tegen I (2004) Modeling Arabian dust mobilization during the Asian summer monsoon: the effect of prescribed versus calculated SST. Geophys Res Lett 31:L22214. doi:10.1029/2004GL020669 CrossRefGoogle Scholar
  32. Ogunjobi KO, Kim YJ (2008) Aerosol characteristics and surface radiative forcing components during a dust outbreak Gwanju, Republic of korea. Environ Monit Assess 137(1–3):111–126CrossRefGoogle Scholar
  33. Omotosho JB, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over West Africa. Meteorol Appl 14:209–225CrossRefGoogle Scholar
  34. Ozer P (2001) Les lithometeores en region sahelienne. Int J Trop Ecol Geogr 24:1–317Google Scholar
  35. Perlwitz, J, Tegen I, Miller RL (2010) Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J Geophys Res 106:18167–18192CrossRefGoogle Scholar
  36. Prospero JM (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. doi:10.1029/2000RG000095 CrossRefGoogle Scholar
  37. Rotstayn LD (2011) Simulated enhancement of ENSO-related rainfall variability due to Australian dust. Atmos Chem Phys 11:6575–6592. doi:10.5194/acp-11-6575-2011 CrossRefGoogle Scholar
  38. Sajani S (2012) Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model. J Earth Syst Sci 121(4):867–889CrossRefGoogle Scholar
  39. Shao Y, Wyrwoll KH, Chappell A, Huang J, Lin Z, Mctainsh GH, Mikami M, Tanaka TY, Wang X, Yoon S (2011) Dust cycle: an emerging core theme in Earth system science. Aeolian Res 2:181–204. doi:10.1016/j.aeolia.2011.02.001 CrossRefGoogle Scholar
  40. Shi G, Wang H, Wang B, Li W, Gong S, Zhao T (2005) Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. J Meteorol Soc Jpn 83 A:333–346. doi:10.2151/jmsj.83A.333 CrossRefGoogle Scholar
  41. Solmon F, Mallet M, Elguindi N, Giorgi F, Zakey A, Konare A (2008) Dust aerosol impact on Regional Precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. doi:10.1029/2008GL035900 CrossRefGoogle Scholar
  42. Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Res 52:97–113. doi:10.3354/cr01039 CrossRefGoogle Scholar
  43. Tesfaye M, Botai J, Sivakumar V, Mengistu TG (2013) Evaluation of regional climatic model simulated aerosol optical properties over South Africa using ground-based and satellite observations. ISRN Atmos Sci 2013:17. doi:10.1155/2013/237483 Google Scholar
  44. Tesfaye M, Mengistu TG, Botai J, Sivakumar V, RCJ Dehl (2015) Mineral dust aerosol distributions, its direct and semi-direct effects over South-Africa based on regional climate model simulation. J Arid Environ 114:22–40. doi:10.1016/j.jaridenv.2014.11.002 CrossRefGoogle Scholar
  45. Thorncroft CD, Blackburn M (1999) Maintenance of the African Easterly Jet. Q J R Meteorol Soc 125:763–786Google Scholar
  46. Thorncroft CD, Nguyen H, Zhang C, Peyrille P (2011) Annual cycle of the West African monsoon: regional circulations and associated water vapour transport. Q J R Meteorolog Soc 137(654):129–147CrossRefGoogle Scholar
  47. Todd MC, BouKaram D, Cavazos C, Bouet C and others (2008) Quantifying uncertainty in estimates of Mineral dust flux: an intercomparison of model performance over the Bodélé Depression, northern Chad. J Geophys Res 113:D24107. doi:10.1029/2008JD010476 CrossRefGoogle Scholar
  48. Tummon F (2011) Direct and Semi-direct aerosol effects on the Southern African regional climate during the Austral Winter season (Ph.D. thesis). University of Cape Town, South AfricaGoogle Scholar
  49. Tummon F, Solmon F, Liousse C, Tadross M (2010) Simulation of the direct and semi direct aerosol effects on the southern Africa regional climate during the biomass burning season. J Geophys Res 115:D19206. doi:10.1029/2009JD013738 CrossRefGoogle Scholar
  50. Wang Y (2004) Regional climate modeling: progress, challenges, and prospects. J Meteor Soc Jpn 82:1599–1628CrossRefGoogle Scholar
  51. Washington R, Todd MC (2005) Atmospheric controls on mineral dust emission from the Bode´le´ Depression, Chad: the role of the low level jet. Geophys Res Lett 32:L17701. doi:10.1029/2005GL023597 CrossRefGoogle Scholar
  52. Woodward S (2005) A simulation of the effect of climate change-induced desertification on Mineral dust aerosol. Geophys Res Lett 32:L18810. doi:10.1029/2005GL023482 CrossRefGoogle Scholar
  53. Yue X (2009) Simulation of dust aerosol radiative feedback using the global transport model of dust: Dust cycle and validation. J Geophys Res 114:D10202. doi:10.1029/2008JD010995 CrossRefGoogle Scholar
  54. Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704CrossRefGoogle Scholar
  55. Zhang Y (2010) Simulating climate-chemistry-aerosol-cloud-radiation feedbacks in continental U.S. using online-coupled WRF/chem. Atmos Environ 44(29):3568–3582CrossRefGoogle Scholar
  56. Zhang Y, Duliere V, Mote PW, Salathe EP Jr (2009) Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. J Climate 22:5511–5526. doi:10.1175/2009JCLI2875.1 CrossRefGoogle Scholar
  57. Zhao C, Liu X, Ruby Leung L, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • K. B. Raji
    • 1
  • K. O. Ogunjobi
    • 2
  • A. A. Akinsanola
    • 2
    • 3
  1. 1.Department of Weather Forecast ServicesNigerian Meteorological AgencyAbujaNigeria
  2. 2.Department of Meteorology and Climate ScienceFederal University of Technology AkureAkureNigeria
  3. 3.School of Energy and EnvironmentCity University of Hong KongKowloon TongHong Kong SAR

Personalised recommendations